Skip to main content

Detection and Localization of Malicious Nodes in Internet of Things Based on SDN

  • Conference paper
  • First Online:
Wireless Artificial Intelligent Computing Systems and Applications (WASA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14998))

  • 210 Accesses

Abstract

In order to solve the security threat caused by malicious nodes in the Internet of Things transmission link to the data flow and transmission process, a Software Defined Network (SDN) based detection and location method of malicious nodes in the Internet of Things is proposed. The software defined network architecture is applied to the transmission process of data flow between edge nodes. The incoming switch node adds a forwarding verification header to the incoming data packet according to the forwarding path. Each downstream switch node verifies and forwards the data packet based on the header to ensure the integrity of the data packet and the consistency of the forwarding path, and sends the abnormal data packet that fails to pass the verification to the controller. The controller locates the malicious exchange node in the link through the header information. Finally, the proposed method is simulated and evaluated, and the experimental results show that the scheme is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiao, Y., Jia, Y., Liu, C., et al.: Edge computing security: state of the art and challenges. Proc. IEEE 107(8), 1608–1631 (2019)

    Article  Google Scholar 

  2. Alwakeel, A.M.: An overview of fog computing and edge computing security and privacy issues. Sensors 21(24), 8226 (2021)

    Article  Google Scholar 

  3. Ranaweera, P., Jurcut, A.D., Liyanage, M.: Survey on multi-access edge computing security and privacy. IEEE Commun. Surv. Tutorials 23(2), 1078–1124 (2021)

    Article  Google Scholar 

  4. Kang, J. J., Fahd, K., Venkatraman, S., Trujillo-Rasua, R., Haskell-Dowland, P.: Hybrid routing for Man-in-the-Middle (MITM) attack detection in IoT networks. In 2019 29th International Telecommunication Networks and Applications Conference (ITNAC), pp. 1–6. IEEE (November 2019)

    Google Scholar 

  5. Mckeown, N.: Software-defined networking. In: IEEE International Conference on Computer Communications, pp. 30–32 (2009)

    Google Scholar 

  6. Javanmardi, S., Shojafar, M., Mohammadi, R., et al.: An SDN perspective IoT-Fog security: a survey. Comput. Netw. 229, 109732 (2023)

    Google Scholar 

  7. Kiran, N., Pan, C., Wang, S., et al.: Joint resource allocation and computation offloading in mobile edge computing for SDN based wireless networks. J. Commun. Netw. 22(1), 1–11 (2019)

    Article  Google Scholar 

  8. Lu, J., Luan, W., Liu, R., et al.: Architecture of distribution internet of things based on widespread sensing & software defined technology. Grid Technol. 42(10), 3108–3115 (2018)

    Google Scholar 

  9. Gao, J., Agyekum, K.O.B.O., Sifah, E.B., et al.: A blockchain-SDN-enabled Internet of vehicles environment for fog computing and 5G networks. IEEE Internet Things J. 7(5), 4278–4291 (2019)

    Article  Google Scholar 

  10. Bosshart, P., Daly, D., Gibb, G., et al.: P4: programming protocol-independent packet processors. ACM SIGCOMM Comput. Commun. Rev. 44(3), 87–95 (2014)

    Article  Google Scholar 

  11. Sadiq, K.A., Thompson, A.F., Ayeni, O.A.: Mitigating DDoS Attacks in Cloud Network using Fog and SDN: A Conceptual Security Framework

    Google Scholar 

  12. Nguyen, T.G., Phan, T.V., Nguyen, B.T., So-In, C., Baig, Z.A., Sanguanpong, S.: Search: a collaborative and intelligent nids architecture for sdn-based cloud iot networks. IEEE Access 7, 107678–107694 (2019)

    Article  Google Scholar 

  13. Khan, M.T., Akhunzada, A., Zeadally, S.: Proactive defense for fog-to-things critical infrastructure. IEEE Commun. Mag. 60(12), 44–49 (2022)

    Article  Google Scholar 

  14. Gao, J., et al.: A blockchain-SDN-enabled internet of vehicles environment for fog computing and 5G networks. IEEE Internet Things J. 7(5), 4278–4291 (2019)

    Article  Google Scholar 

  15. Xie, L., Ding, Y., Yang, H., Wang, X.: Blockchain-based secure and trustwor-thy internet of things in SDN-enabled 5G-VANETs. IEEE Access 7, 56656–56666 (2019)

    Article  Google Scholar 

  16. Oh, J., et al.: A secure data sharing based on key aggregate searchable encryption in fog-enabled IoT environment. IEEE Trans. Netw. Sci. Eng. 9(6),  4468–4481 (2022)

    Google Scholar 

  17. Torres-Charles, C.A., Carrizales-Espinoza, D.E., Sanchez-Gallegos, D.D., et al.: SecMesh: an efficient information security method for stream processing in edge-fog-cloud. In: Proceedings of the 2022 7th International Conference on Cloud Computing and Internet of Things, pp. 8–16 (2022)

    Google Scholar 

  18. Mohan, K.V.M., Kodati, S.,  Krishna, V.: Securing SDN enabled IoT scenario infrastructure of fog networks from attacks. In: 2022 Second International Conference on Artificial Intelligence and Smart Energy, ICAIS, pp. 1239–1243. IEEE (2022)

    Google Scholar 

  19. Zhang, P., Xu, S., Yang, Z., et al.: FOCES: detecting forwarding anomalies in software defined networks. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 830–840. IEEE (2018)

    Google Scholar 

  20. Hessam, G., Saba, G., Alkhayat, M.I.: A new approach for detecting violation of data plane integrity in software defined networks. J. Comput. Secur. 29(3), 341–358 (2021)

    Article  Google Scholar 

  21. Kim, T.H.J., Basescu, C., Jia, L., et al.: Lightweight source authentication and path validation. In: Proceedings of the 2014 ACM Conference on SIGCOMM, pp. 271–282 (2014)

    Google Scholar 

  22. Sasaki, T., Pappas, C., Lee, T., et al.: SDNsec: forwarding accountability for the SDN data plane. In: 2016 25th International Conference on Computer Communication and Networks (ICCCN), pp. 1–10. IEEE (2016)

    Google Scholar 

  23. Zuo, Z., Chang, C., Zhang, Y., et al.: P4Label: packet forwarding control mechanism based on P4 for software-defined networking. J. Ambient Intell. Humanized Comput., 1–14 (2020)

    Google Scholar 

  24. Wu, P., Chang, C., Zuo, Z., et al.: SDN packet forwarding verification based on address overloading. J. Commun. 43(3), 88–100 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Jingxu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jingxu, X., Chaowen, C., Lu, Y., Yingying, M., Chenli, Y. (2025). Detection and Localization of Malicious Nodes in Internet of Things Based on SDN. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14998. Springer, Cham. https://doi.org/10.1007/978-3-031-71467-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71467-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71466-5

  • Online ISBN: 978-3-031-71467-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics