Skip to main content

Efficient Online Path Selection and Workload Allocation for In-Network Computing in MEC

  • Conference paper
  • First Online:
Wireless Artificial Intelligent Computing Systems and Applications (WASA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14999))

  • 212 Accesses

Abstract

In this paper, we study the joint optimization problem of computation path selection and workload allocation for in-network computing at the edge. The existing works, which only consider the end-to-end latency, ignore the operational cost of the servers and the dynamic tasks arrived in an online manner. Thus, we investigate the first online scheduling problem of path selection and workload allocation for in-network computing. Such a problem is modeled as a mixed integer programming problem, which tries to jointly minimize the server operating cost and end-to-end latency. Then, a dynamic 3D-map is constructed to take both the operation cost and end-to-end latency into account. Based on the constructed 3D-map, a cooperative learning based algorithm with ant colony optimization is proposed. Finally, the extensive simulation demonstrates the proposed algorithm shows good robustness and outperforms the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, R., Xie, Z., Yu, D., et al.: Digital twin-assisted federated learning service provisioning over mobile edge networks. IEEE Trans. Comput. 73(2), 586–598 (2024)

    Article  Google Scholar 

  2. Cai, Z., Chen, Q., Shi, T., et al.: Battery-free wireless sensor networks: a comprehensive survey. IEEE Internet Things J. 10(6), 5543–5570 (2023)

    Article  Google Scholar 

  3. Liu, Z., Li, F., Yu, D., et al.: Online learning-based allocation of base stations and channels in cognitive radio networks. In: Proceedings of the WASA, pp. 346–358 (2020)

    Google Scholar 

  4. Zhou, X., et al.: Hierarchical federated learning with social context clustering-based participant selection for internet of medical things applications. IEEE Trans. Comput. Soc. Syst. 10(4), 1742–1751 (2023)

    Article  Google Scholar 

  5. Chen, Q., et al.: Low latency broadcast scheduling for battery-free wireless networks without predetermined structures. In: Proceedings of the ICDCS, pp. 245–255 (2020)

    Google Scholar 

  6. Li, J., Guo, S., Liang, W., et al.: Digital twin-enabled service provisioning in edge computing via continual learning. IEEE Trans. Mob. Comput. (2023)

    Google Scholar 

  7. Guo, X., Dong, F., Shen, D., et al.: Exploiting the computational path diversity with in-network computing for MEC. In: Proceedings of the IEEE SECON, pp. 280–288 (2022)

    Google Scholar 

  8. Zheng, C., Tang, H., Zang, M., et al.: DINC: toward distributed in-network computing. In: Proceedings of the ACM CoNEXT (2023)

    Google Scholar 

  9. Liu, B., Cao, Y., Zhang, Y., Jiang, T.: A distributed framework for task offloading in edge computing networks of arbitrary topology. IEEE Trans. Wirel. Commun. 19(4), 2855–2867 (2020)

    Article  Google Scholar 

  10. Jin, P., Fei, X., Zhang, Q., et al.: Latency-aware VNF chain deployment with efficient resource reuse at network edge. In: Proceedings of the IEEE INFOCOM (2020)

    Google Scholar 

  11. Ren, H., Xu, Z., Liang, W., et al.: Efficient algorithms for delay-aware NFV-enabled multicasting in mobile edge clouds with resource sharing. IEEE Trans. Parallel Distrib. Syst. 31(9), 2050–2066 (2020)

    Article  Google Scholar 

  12. Agarwal, S., Malandrino, F., Chiasserini, C.F., et al.: Joint VNF placement and CPU allocation in 5G. In: Proceedings of the IEEE INFOCOM, Honolulu, HI, USA (2018)

    Google Scholar 

  13. Zheng, D., Peng, C., Liao, X., et al.: Towards latency optimization in hybrid service function chain composition and embedding. In: Proceedings of the IEEE INFOCOM, Toronto, ON, Canada, 6-9 July 2020, pp. 1539–1548 (2020)

    Google Scholar 

  14. Hung, Y.W., Chen, Y.C., Lo, C., et al.: Dynamic workload allocation for edge computing. IEEE Trans. VLSI Syst. 29(3), 519–529 (2021)

    Article  Google Scholar 

  15. Li, D., Hong, P., Xue, K., Pei, J.: Virtual network function placement considering resource optimization and SFC requests in cloud datacenter. IEEE Trans. Parallel Distrib. Syst. 29(7), 1664–1677 (2018)

    Article  Google Scholar 

  16. Misra, S., Saha, N.: Detour: dynamic task offloading in software-defined fog for IoT applications. IEEE J. Sel. Areas Commun. 37(5), 1159–1166 (2019)

    Article  Google Scholar 

  17. Chen, Q. Guo, S., Wang, K., et al.: Towards real-time inference offloading with distributed edge computing: the framework and algorithms. IEEE Trans. Mob. Comput., 1–18 (2023)

    Google Scholar 

  18. Li, J., et al.: SFC-enabled reliable service provisioning in mobile edge computing via digital twins. In: Proceedings of the IEEE MASS, pp. 311–317 (2022)

    Google Scholar 

  19. Li, J., Guo, S., Liang, W., et al.: Digital twin-assisted, SFC-enabled service provisioning in mobile edge computing. IEEE Trans. Mob. Comput. 23(1), 393–408 (2024)

    Article  Google Scholar 

  20. Meng, X., Wang, W., et al.: Closed-form delay-optimal computation offloading in mobile edge computing systems. IEEE Trans. Wirel. Commun. (2019)

    Google Scholar 

  21. Yang, C.S., et al.: Communication-aware scheduling of serial tasks for dispersed computing. IEEE/ACM Trans. Netw. 27(4), 1330–1343 (2019)

    Article  Google Scholar 

  22. Liu, J., Xu, H., Zhao, G., et al.: Incremental server deployment for scalable NFV-enabled networks. In: Proceedings of the IEEE INFOCOM, pp. 2361–2370 (2020)

    Google Scholar 

  23. Shang, X., Huang, Y., Liu, Z., Yang, Y.: Reducing the service function chain backup cost over the edge and cloud by a self-adapting scheme. IEEE Trans. Mob. Comput. 21(8), 2994–3008 (2022)

    Article  Google Scholar 

  24. Cziva, R., Anagnostopoulos, C., Pezaros, D.P.: Dynamic, latency-optimal vNF placement at the network edge. In: Proceedings of the IEEE INFOCOM, Honolulu, HI (2018)

    Google Scholar 

  25. Mao, Y., Shang, X., Yang, Y.: Provably efficient algorithms for traffic-sensitive SFC placement and flow routing. In: Proceedings of the IEEE INFOCOM (2022)

    Google Scholar 

  26. Mao, Y., Shang, X., Yang, Y.: Ant colony based online learning algorithm for service function chain deployment. In: Proceedings of the IEEE INFOCOM (2023)

    Google Scholar 

  27. Cai, Z., et al.: Latency-and-coverage aware data aggregation scheduling for multihop battery-free wireless networks. IEEE Trans. Wirel. Commun. 20(3), 1770–1784 (2021)

    Article  Google Scholar 

  28. Chen, Q., et al.: Energy-collision aware minimum latency aggregation scheduling for energy-harvesting sensor networks. ACM Trans. Sens. Netw. 17(4), 1–34 (2021)

    Article  Google Scholar 

  29. Zhou, X., Zheng, X., Cui, X., et al.: Digital twin enhanced federated reinforcement learning with lightweight knowledge distillation in mobile networks. IEEE J. Sel. Areas Commun. 41(10), 3191–3211 (2023)

    Article  Google Scholar 

  30. Chen, Q., Gao, H., Li, Y., et al.: Edge-based beaconing schedule in duty-cycled multihop wireless networks. In: Proceedings of INFOCOM (2017)

    Google Scholar 

  31. Li, L., et al.: Towards efficient and delay-aware NFV-enabled unicasting with adjustable service function chains. IEEE Open J. Comput. Soc. (2022)

    Google Scholar 

  32. Zhang, J., et al.: Task-oriented energy scheduling in wireless rechargeable sensor networks. ACM Trans. Sen. Netw. 19(4), 1–32 (2023)

    Google Scholar 

  33. Dorigo, M., et al.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the NSFC under Grant No. 62372118, the Guangdong Basic and Applied Basic Research Foundation (No. 2024A1515030136), the Guangzhou Science and Technology Plan under Grant 2023A04J1701.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanlong Zhang or Quan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouyang, S., Zhang, F., Mai, J., Chai, Y., Chen, Q., Tao, Y. (2025). Efficient Online Path Selection and Workload Allocation for In-Network Computing in MEC. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14999. Springer, Cham. https://doi.org/10.1007/978-3-031-71470-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71470-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71469-6

  • Online ISBN: 978-3-031-71470-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics