Skip to main content

V2ICooper: Toward Vehicle-to-Infrastructure Cooperative Perception with Spatiotemporal Asynchronous Fusion

  • Conference paper
  • First Online:
Wireless Artificial Intelligent Computing Systems and Applications (WASA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14999))

  • 222 Accesses

Abstract

In recent years, cooperative perception (CP) in vehicle-to-infrastructure (V2I) scenarios has gained significant traction as a key technology in autonomous driving. In this paper, we investigate the end-to-end object detection model and spatiotemporal asynchrony to enhance the perception performance of autonomous vehicles. We propose a novel V2I CP framework termed V2ICooper, designed for efficient and robust object detection and fusion. We propose an end-to-end object detection model with a heterogeneous multi-agent middle layer (HMML) serving as a backbone module. HMML facilitates feature interaction across different levels, allowing for the exploration of richer features and enhancing the system’s detection performance. To mitigate the impact of spatiotemporal asynchrony on the results, we introduce the spatiotemporal asynchronous fusion (SAF) method. This approach involves learning complex nonlinear mapping relationships between input sequences and corresponding object sequences, enabling spatiotemporal alignment. Experimental validations conducted by V2ICooper on real-world DAIR-V2X-C dataset demonstrate superior accuracy and robustness in object detection. Additionally, the successful implementation of the proposed system in real scenarios substantiates its effectiveness, as evidenced by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Y.-C., Tian, J., Glaser, N., Kira, Z.: When2com: multi-agent perception via communication graph grouping. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4105–4114 (2020)

    Google Scholar 

  2. Liu, K., Liu, C., Yan, G., Lee, V.C.S., Cao, J.: Accelerating DNN inference with reliability guarantee in vehicular edge computing. IEEE/ACM Trans. Netw. 31(6), 3238–3253 (2023)

    Article  Google Scholar 

  3. Liu, C., Liu, K.: Toward reliable DNN-based task partitioning and offloading in vehicular edge computing. IEEE Trans. Consum. Electron., 1 (2023)

    Google Scholar 

  4. Song, J., Hyun, S.-H., Lee, J.-H., Choi, J., Kim, S.-C.: Joint vehicle tracking and RSU selection for V2I communications with extended Kalman filter. IEEE Trans. Veh. Technol. 71(5), 5609–5614 (2022)

    Article  Google Scholar 

  5. Zhang, S., Wang, S., Yu, S., Yu, J.J.Q., Wen, M.: Collision avoidance predictive motion planning based on integrated perception and V2V communication. IEEE Trans. Intell. Transp. Syst. 23(7), 9640–9653 (2022)

    Article  Google Scholar 

  6. Shi, S., et al.: VIPS: real-time perception fusion for infrastructure-assisted autonomous driving. In: Proceedings of the 28th Annual International Conference on Mobile Computing And Networking, pp. 133–146 (2022)

    Google Scholar 

  7. Xu, R., Tu, Z., Xiang, H., Shao, W., Zhou, B., Ma, J.: CoBEVT: cooperative bird’s eye view semantic segmentation with sparse transformers. arXiv preprint arXiv:2207.02202 (2022)

  8. Vadivelu, N., Ren, M., Tu, J., Wang, J., Urtasun, R.: Learning to communicate and correct pose errors. In: Conference on Robot Learning, pp. 1195–1210 (2021)

    Google Scholar 

  9. Yu, H., et al.: DAIR-V2X: a large-scale dataset for vehicle-infrastructure cooperative 3D object detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21361–21370 (2022)

    Google Scholar 

  10. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  11. Hu, Y., Ding, Z., Ge, R., Shao, W., Huang, L., Li, K., Liu, Q.: AFDetV2: rethinking the necessity of the second stage for object detection from point clouds. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 969–979 (2022)

    Google Scholar 

  12. Wang, TH., Manivasagam, S., Liang, M., Yang, B., Zeng, W., Urtasun, R.: V2VNet: vehicle-to-vehicle communication for joint perception and prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 605–621. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_36

  13. Xu, R., Xiang, H., Tu, Z., Xia, X., Yang, M.H., Ma, J.: V2X-ViT: vehicle-to-everything cooperative perception with vision transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13699, pp. 107–124. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19842-7_7

  14. Xu, R., Xiang, H., Xia, X., Han, X., Li, J., Ma, J.: OPV2V: an open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In: 2022 International Conference on Robotics and Automation, pp. 2583–2589 (2022)

    Google Scholar 

  15. Mehr, E., Jourdan, A., Thome, N., Cord, M., Guitteny, V.: DiscoNet: shapes learning on disconnected manifolds for 3D editing. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3474–3483 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China under Grant No. 62172064, and by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202100637).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Zhang or Kai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yi, S., Zhang, H., Jin, F., Hu, Y., Li, R., Liu, K. (2025). V2ICooper: Toward Vehicle-to-Infrastructure Cooperative Perception with Spatiotemporal Asynchronous Fusion. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14999. Springer, Cham. https://doi.org/10.1007/978-3-031-71470-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71470-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71469-6

  • Online ISBN: 978-3-031-71470-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics