Skip to main content

Device-Edge-Cloud Collaborative Video Stream Processing and Scheduling Strategy Based on Deep Reinforcement Learning

  • Conference paper
  • First Online:
Wireless Artificial Intelligent Computing Systems and Applications (WASA 2024)

Abstract

The burgeoning field of Artificial Intelligence for the Internet of Things (AIoT) is rapidly transforming smart transportation, posing the formidable challenge of efficiently processing voluminous traffic data. Addressing this, our study presents a novel three-tiered device-edge-cloud video stream scheduling framework, DECS-DRL, underpinned by deep reinforcement learning. The DECS-DRL framework enables efficient video stream processing through multi-layer collaboration: key frame extraction, using lightweight models for fast task processing, and using more complex models for high-precision task processing. Central to navigating the intricate balance between detection accuracy and latency minimization in task scheduling, we introduce an innovative deep reinforcement learning algorithm enhanced by a hybrid state encoder. Our empirical evaluations underscore the DECS-DRL framework’s efficacy, showcasing significant advancements in video streaming task scheduling and optimizing deep reinforcement learning model training within intelligent transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, H.T., Jiang, B., Ding, S.X., Huang, B.A.: Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 23(3), 1700–1716 (2022)

    Article  Google Scholar 

  2. Huang, Q.Y., Jia, H.F., Xu, Y.B., Yang, Y.J., Xiao, G.X.: Limi-TFP: citywide traffic flow prediction with limited road status information. IEEE Trans. Veh. Technol. 72(3), 2947–2959 (2023)

    Article  Google Scholar 

  3. Karagiannis, G., et al.: Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surv. Tutorials 13(4), 584–616 (2011)

    Article  Google Scholar 

  4. Lee, D., Lee, C., Jang, G., Na, W., Cho, S.: Energy-efficient directional charging strategy for wireless rechargeable sensor networks. IEEE Internet Things J. 9(19), 19034–19048 (2022)

    Article  Google Scholar 

  5. Liang, W., Xie, W.Q., Zhou, X.K., Wang, K.I.K., Ma, J.H., Jin, Q.: Bi-dueling DQN enhanced two-stage scheduling for augmented surveillance in smart ems. IEEE Trans. Industr. Inf. 19(7), 8218–8228 (2023)

    Article  Google Scholar 

  6. Long, S.Q., Zhang, Y., Deng, Q.Y., Pei, T.R., Ouyang, J.Z., Xia, Z.H.: An efficient task offloading approach based on multi-objective evolutionary algorithm in cloud-edge collaborative environment. IEEE Trans. Netw. Sci. Eng. 10(2), 645–657 (2023)

    Article  Google Scholar 

  7. Malekloo, M.H., Kara, N., Barachi, M.: An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments. Sustainable Comput. Infor. Syst. 17, 9–24 (2018)

    Article  Google Scholar 

  8. Mu, J.S., Jin, J., Jing, X.J., Zhang, R.H., Zhang, P.Y., Zhu, H.L.: Machine learning assisted video stream offloading for 5G MBMS mobile edge computing. IEEE Trans. Broadcast. (2023)

    Google Scholar 

  9. Qiu, J., Wang, R., Chakrabarti, A., Guerin, R., Lu, C.: Adaptive edge offloading for image classification under rate limit. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(11), 3886–3897 (2022)

    Article  Google Scholar 

  10. Sarkar, A., Murray, J., Dasari, M., Zink, M., Nahrstedt, K., Soc, I.C.: L3bou: low latency, low bandwidth, optimized super-resolution backhaul for 360-degree video streaming. In: 23rd IEEE International Symposium on Multimedia (ISM), pp. 138–147. IEEE International Symposium on Multimedia-ISM (2021)

    Google Scholar 

  11. Song, M.C., et al.: In-situ AI: towards autonomous and incremental deep learning for IoT systems. In: 24th IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 92–103. International Symposium on High-Performance Computer Architecture-Proceedings (2018)

    Google Scholar 

  12. Wang, L.F., Zhang, Z.Y., Di, X., Tian, J.: IEEE: a roadside camera-radar sensing fusion system for intelligent transportation. In: 17th European Radar Conference (EuRAD), pp. 282–285. European Radar Conference EuRAD (2021)

    Google Scholar 

  13. Wen, L.Y., et al.: Ua-detrac: a new benchmark and protocol for multi-object detection and tracking. Comput. Vision Image Underst. 193 (2020)

    Google Scholar 

  14. Xiao, K.L., Gao, Z.P., Wang, Q., Yang, Y.: IEEE: a heuristic algorithm based on resource requirements forecasting for server placement in edge computing. In: 3rd IEEE/ACM Symposium on Edge Computing (SEC), pp. 354–355 (2018)

    Google Scholar 

  15. Xing, P.Y., Wang, Y.W., Peng, P.X., Tian, Y.H., Huang, T.J.: IEEE: end-edge-cloud collaborative system: a video big data processing and analysis architecture. In: IEEE 3rd International Conference on Multimedia Information Processing and Retrieval (IEEE MIPR), pp. 233–236 (2020)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by Formal analysis and optimization research on production capacity of large-scale personalized customization system, National Key Laboratory of Large-Scale Personalized Customization Systems and Technology, H&C-MPC-2023–02-03.Innovation Fund Project for Graduate Student of China University of Petroleum (East China) and the Fundamental Research Funds for the Central Universities (No.24CX04030A)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanchen Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, N., Pang, S., Ji, X., Gui, H., He, X. (2025). Device-Edge-Cloud Collaborative Video Stream Processing and Scheduling Strategy Based on Deep Reinforcement Learning. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14999. Springer, Cham. https://doi.org/10.1007/978-3-031-71470-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71470-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71469-6

  • Online ISBN: 978-3-031-71470-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics