Skip to main content

Vision Transformer Features-Based Leukemia Classification

  • Conference paper
  • First Online:
Artificial Neural Networks in Pattern Recognition (ANNPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15154))

Included in the following conference series:

  • 296 Accesses

Abstract

Acute Lymphoblastic Leukemia (ALL) is a disease that is caused by the uncontrollable growth of immature and malignant White Blood Cells (WBCs) which are called lymphoblasts. It occurs when the bone marrow contains 20% or more lymphoblasts. Therefore, Leukemia is diagnosed by counting White Blood Cells (WBCs) in the microscopic smears of bone marrow and blood. There are several attempts for effective leukemia classification with the help of computer aided-based methods by analyzing microscopic smear images. However, how to further improve the classification accuracy is still challenging. Therefore, in this paper, we propose an end-to-end framework to classify ALL. First, we train a more robust specific pre-trained Vision Transformer (ViT) trained on the same type of data, ALL-IDB1. Then, we examine the extracted features of Deep ViT across layers and utilize these features as dense descriptors to make predictions. Based on the observation in this paper, we find and empirically demonstrate that such features, when extracted from the ViT model, consistently improve the classification performance. Moreover, we observe that the pre-trained ViT which is fine-tuned on specific dataset is more effective than the general images dataset. We show that our proposed method achieves an average accuracy of 98.75% which is a competitive result with recent state-of-the-art by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ALL-IDB Homepage.https://homes.di.unimi.it/scotti/all/. Accessed 25 Oct 2023

  2. Rastogi, P., Khanna, K., Singh, V.: LeuFeatx: deep learning-based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear. Comput. Biol. Med. 142, 105236 (2022)

    Article  Google Scholar 

  3. Das, P., Meher, S.: An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia. Expert Syst. Appl. 183, 115311 (2021)

    Article  Google Scholar 

  4. Sahlol, A., Kollmannsberger, P., Ewees, A.: Efficient classification of white blood cell leukemia with improved swarm optimization of deep features. Sci. Rep. 10(1), 2536 (2020)

    Article  Google Scholar 

  5. Cho, P., Dash, S., Tsaris, A., Yoon, H.J.: Image transformers for classifying acute lymphoblastic leukemia. In: Medical Imaging 2022: Computer-Aided Diagnosis, vol. 12033, pp. 647–653. SPIE (2022)

    Google Scholar 

  6. Khandekar, R., Shastry, P., Jaishankar, S., Faust, O., Sampathila, N.: Automated blast cell detection for Acute Lymphoblastic Leukemia diagnosis. Biomed. Signal Process. Control 68, 102690 (2021)

    Article  Google Scholar 

  7. Gokulkrishnan, N., Nayak, T., Sampathila, N.: Deep learning-based analysis of blood smear images for detection of acute lymphoblastic leukemia. In 2023 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–5. IEEE (2023)

    Google Scholar 

  8. Claro, M., et al.: Assessing the impact of data augmentation and a combination of CNNs on leukemia classification. Inf. Sci. 609, 1010–1029 (2022)

    Article  Google Scholar 

  9. Jawahar, M., Sharen, H., Jani, L., Gandomi, A.: ALNett: a cluster layer deep convolutional neural network for acute lymphoblastic leukemia classification. Comput. Biol. Med. 148, 105894 (2022)

    Article  Google Scholar 

  10. Zeng, W., et al.: Microscopic hyperspectral image classification based on fusion transformer with parallel CNN. IEEE J. Biomed. Health Inform. (2023)

    Google Scholar 

  11. Aitazaz, T., Tubaishat, A., Al-Obeidat, F., Shah, B., Zia, T., Tariq, T.: Transfer learning for histopathology images: an empirical study. Neural Comput. Appl. 35(11), 7963–7974 (2023)

    Article  Google Scholar 

  12. Selvano, E., Paulindino, A., Elwirehardja, G., Pardamean, B.: Evaluating self-supervised pre-trained vision transformer on imbalanced data for lung disease classification. ICIC Express Lett. Part B: Appl. (2023)

    Google Scholar 

  13. Asiri, A., et al.: Advancing brain tumor classification through fine-tuned vision transformers: a comparative study of pre-trained models. Sensors 23(18), 7913 (2023)

    Article  Google Scholar 

  14. Yang, G., Luo, S., Greer, P.: A novel vision transformer model for skin cancer classification. Neural Process. Lett. 55(7), 9335–9351 (2023)

    Article  Google Scholar 

  15. Shanmugam, J., Duraisamy, B., Simon, B., Bhaskaran, P.: Alzheimer’s disease classification using pre-trained deep networks. Biomed. Signal Process. Control 71, 103217 (2022)

    Article  Google Scholar 

  16. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv: pp2010.11929 (2020)

  17. Naseer, M., Ranasinghe, K., Khan, S., Hayat, M., Khan, F., Yang, M.: Intriguing properties of vision transformers. Adv. Neural. Inf. Process. Syst. 34, 23296–23308 (2021)

    Google Scholar 

  18. Puls, E., Todescato, M., Carbonera, J.: An evaluation of pre-trained models for feature extraction in image classification. arXiv preprint arXiv:2310.02037 (2023)

  19. Maurya, R., Pandey, N., Dutta, M.: VisionCervix: papanicolaou cervical smears classification using novel CNN-Vision ensemble approach. Biomed. Signal Process. Control 79, 104156 (2023)

    Article  Google Scholar 

  20. Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12299–12310 (2021)

    Google Scholar 

  21. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., J’egou, H.: Training data efficient image transformers and distillation through attention. arXiv preprint arXiv:2012.12877 (2020)

  22. Ye, L., Rochan, M., Liu, Z., Wang, Y.: Cross-modal self-attention network for referring image segmentation. In: CVPR (2019)

    Google Scholar 

  23. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. arXiv preprint arXiv:2005.12872 (2020)

  24. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  25. Deng, J., Dong, W., Socher, R., Li, Li-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255, 5206848 (2009)

    Google Scholar 

  26. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: On the effectiveness of ViT features as local semantic descriptors. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022. LNCS, vol. 13804, pp. 39–55. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25069-9_3

    Chapter  Google Scholar 

  27. Kataoka, H., Iwata, K., Satoh, Y.: Feature evaluation of deep convolutional neural networks for object recognition and detection. arXiv:1509.07627 (2015)

  28. Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 512–519 (2014)

    Google Scholar 

  29. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  30. Wei, Y., et al.: CNN: single-label to multi-label. Comput. Sci. (2014)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Krzyżak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben-Suliman, K., Krzyżak, A. (2024). Vision Transformer Features-Based Leukemia Classification. In: Suen, C.Y., Krzyzak, A., Ravanelli, M., Trentin, E., Subakan, C., Nobile, N. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2024. Lecture Notes in Computer Science(), vol 15154. Springer, Cham. https://doi.org/10.1007/978-3-031-71602-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71602-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71601-0

  • Online ISBN: 978-3-031-71602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics