Abstract
Neural decoding widely exploits machine learning for classifying electroencephalographic (EEG) signals for brain-computer interface applications. Recent advancements in neural decoding regards the use of brain functional connectivity estimates as input features and the adoption of convolutional neural networks (CNNs) to realize decoders. Moreover, explainable artificial intelligence (XAI) approaches based on CNNs are growing interest in the neuroscience community, for validating the knowledge learned by networks and for using the decoder not only to classify the EEG but also to analyze it in a data-driven way, without a priori assumptions. However, the adoption of connectivity estimates for neural decoding is still in its infancy, as adopts non-directed connectivity measures, limits the analysis of few interactions/frequency ranges, and exploits classic machine learning approaches without exploring CNNs. Moreover, XAI approaches have never been applied to analyze EEG-based functional connectivity. To overcome these limitations, we design and apply a CNN for processing directed connectivity measures estimated via spectral Granger causality. The CNN automatically learns features in the frequency and spatial domains, and it is coupled with an explanation technique (DeepLIFT) for highlighting the most relevant connectivity inflow and outflow associated to each decoded brain state. Our approach is applied to motor imagery decoding, and achieves state-of-the-art performance compared to existing networks. DeepLIFT relevance representations match the directional interactions known occurring when imagining movements, validating the features related to the brain network, as learned by the CNN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, J., Chen, X., Wu, D.: Algorithm contest of motor imagery BCI in the world robot contest 2022: a survey. Brain Sci. Adv. 9(3), 166–181 (2023). http://dx.doi.org/10.26599/BSA.2023.9050011
Bastos, A.M., Schoffelen, J.M.: A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9 (2016). http://dx.doi.org/10.3389/fnsys.2015.00175
Borra, D., Bossi, F., Rivolta, D., Magosso, E.: Deep learning applied to EEG source-data reveals both ventral and dorsal visual stream involvement in holistic processing of social stimuli. Sci. Rep. 13(1) (2023). http://dx.doi.org/10.1038/s41598-023-34487-z
Borra, D., Fantozzi, S., Bisi, M.C., Magosso, E.: Modulations of cortical power and connectivity in alpha and beta bands during the preparation of reaching movements. Sensors 23(7), 3530 (2023). http://dx.doi.org/10.3390/s23073530
Borra, D., Filippini, M., Ursino, M., Fattori, P., Magosso, E.: Motor decoding from the posterior parietal cortex using deep neural networks. J. Neural Eng. 20(3), 036016 (2023). http://dx.doi.org/10.1088/1741-2552/acd1b6
Borra, D., Filippini, M., Ursino, M., Fattori, P., Magosso, E.: Convolutional neural networks reveal properties of reach-to-grasp encoding in posterior parietal cortex. Comput. Biol. Med. 172, 108188 (2024). http://dx.doi.org/10.1016/j.compbiomed.2024.108188
Borra, D., Magosso, E.: Deep learning-based EEG analysis: investigating P3 ERP components. J. Integr. Neurosci. 20(4), 791–811 (2021). http://dx.doi.org/10.31083/j.jin2004083
Borra, D., Mondini, V., Magosso, E., Müller-Putz, G.R.: Decoding movement kinematics from EEG using an interpretable convolutional neural network. Comput. Biol. Med. 165, 107323 (2023). http://dx.doi.org/10.1016/j.compbiomed.2023.107323
Brusini, L., Stival, F., Setti, F., Menegatti, E., Menegaz, G., Storti, S.F.: A systematic review on motor-imagery brain-connectivity-based computer interfaces. IEEE Trans. Hum.-Mach. Syst. 51(6), 725–733 (2021). http://dx.doi.org/10.1109/THMS.2021.3115094
Filippini, M., Borra, D., Ursino, M., Magosso, E., Fattori, P.: Decoding sensorimotor information from superior parietal lobule of macaque via convolutional neural networks. Neural Netw. 151, 276–294 (2022). http://dx.doi.org/10.1016/j.neunet.2022.03.044
Hu, S., Wang, H., Zhang, J., Kong, W., Cao, Y., Kozma, R.: Comparison analysis: granger causality and new causality and their applications to motor imagery. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1429–1444 (2016). http://dx.doi.org/10.1109/TNNLS.2015.2441137
Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 15(5), 056013 (2018). https://doi.org/10.1088/1741-2552/aace8c
Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018). http://dx.doi.org/10.1088/1741-2552/aab2f2
Neuper, C., Wörtz, M., Pfurtscheller, G.: ERD/ERS patterns reflecting sensorimotor activation and deactivation, pp. 211–222. Elsevier (2006). http://dx.doi.org/10.1016/S0079-6123(06)59014-4
Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019). http://dx.doi.org/10.1088/1741-2552/ab260c
Salami, A., Andreu-Perez, J., Gillmeister, H.: EEG-ITNet: an explainable inception temporal convolutional network for motor imagery classification. IEEE Access 10, 36672–36685 (2022). http://dx.doi.org/10.1109/ACCESS.2022.3161489
Santamaría-Vázquez, E., Martínez-Cagigal, V., Vaquerizo-Villar, F., Hornero, R.: EEG-inception: a novel deep convolutional neural network for assistive ERP-based brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 28(12), 2773–2782 (2020). http://dx.doi.org/10.1109/TNSRE.2020.3048106
Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017). https://doi.org/10.1002/hbm.23730
Seth, A.K., Barrett, A.B., Barnett, L.: Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35(8), 3293–3297 (2015). http://dx.doi.org/10.1523/JNEUROSCI.4399-14.2015
Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences (2017). https://doi.org/10.48550/ARXIV.1704.02685, https://arxiv.org/abs/1704.02685
Simões, M., et al.: BCIAUT-P300: a multi-session and multi-subject benchmark dataset on autism for p300-based brain-computer-interfaces. Front. Neurosci. 14 (2020). http://dx.doi.org/10.3389/fnins.2020.568104
Sujatha Ravindran, A., Contreras-Vidal, J.: An empirical comparison of deep learning explainability approaches for EEG using simulated ground truth. Sci. Rep. 13(1) (2023). http://dx.doi.org/10.1038/s41598-023-43871-8
Tangermann, M., et al.: Review of the BCI competition IV. Front. Neurosci. 6 (2012). https://doi.org/10.3389/fnins.2012.00055
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). http://dx.doi.org/10.1016/s1388-2457(02)00057-3
Acknowledgments
This research was co-funded by the Italian Complementary National Plan PNC-I.1 “Research initiatives for innovative technologies and pathways in the health and welfare sector” D.D. 931 of 06/06/2022, “DARE - DigitAl lifelong pRevEntion” initiative, code PNC0000002, CUP: B53C22006450001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors declare no conflict of interest.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Borra, D., Ravanelli, M. (2024). Explaining Network Decision Provides Insights on the Causal Interaction Between Brain Regions in a Motor Imagery Task. In: Suen, C.Y., Krzyzak, A., Ravanelli, M., Trentin, E., Subakan, C., Nobile, N. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2024. Lecture Notes in Computer Science(), vol 15154. Springer, Cham. https://doi.org/10.1007/978-3-031-71602-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-71602-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71601-0
Online ISBN: 978-3-031-71602-7
eBook Packages: Computer ScienceComputer Science (R0)