Skip to main content

Explaining Network Decision Provides Insights on the Causal Interaction Between Brain Regions in a Motor Imagery Task

  • Conference paper
  • First Online:
Artificial Neural Networks in Pattern Recognition (ANNPR 2024)

Abstract

Neural decoding widely exploits machine learning for classifying electroencephalographic (EEG) signals for brain-computer interface applications. Recent advancements in neural decoding regards the use of brain functional connectivity estimates as input features and the adoption of convolutional neural networks (CNNs) to realize decoders. Moreover, explainable artificial intelligence (XAI) approaches based on CNNs are growing interest in the neuroscience community, for validating the knowledge learned by networks and for using the decoder not only to classify the EEG but also to analyze it in a data-driven way, without a priori assumptions. However, the adoption of connectivity estimates for neural decoding is still in its infancy, as adopts non-directed connectivity measures, limits the analysis of few interactions/frequency ranges, and exploits classic machine learning approaches without exploring CNNs. Moreover, XAI approaches have never been applied to analyze EEG-based functional connectivity. To overcome these limitations, we design and apply a CNN for processing directed connectivity measures estimated via spectral Granger causality. The CNN automatically learns features in the frequency and spatial domains, and it is coupled with an explanation technique (DeepLIFT) for highlighting the most relevant connectivity inflow and outflow associated to each decoded brain state. Our approach is applied to motor imagery decoding, and achieves state-of-the-art performance compared to existing networks. DeepLIFT relevance representations match the directional interactions known occurring when imagining movements, validating the features related to the brain network, as learned by the CNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, J., Chen, X., Wu, D.: Algorithm contest of motor imagery BCI in the world robot contest 2022: a survey. Brain Sci. Adv. 9(3), 166–181 (2023). http://dx.doi.org/10.26599/BSA.2023.9050011

  2. Bastos, A.M., Schoffelen, J.M.: A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9 (2016). http://dx.doi.org/10.3389/fnsys.2015.00175

  3. Borra, D., Bossi, F., Rivolta, D., Magosso, E.: Deep learning applied to EEG source-data reveals both ventral and dorsal visual stream involvement in holistic processing of social stimuli. Sci. Rep. 13(1) (2023). http://dx.doi.org/10.1038/s41598-023-34487-z

  4. Borra, D., Fantozzi, S., Bisi, M.C., Magosso, E.: Modulations of cortical power and connectivity in alpha and beta bands during the preparation of reaching movements. Sensors 23(7), 3530 (2023). http://dx.doi.org/10.3390/s23073530

  5. Borra, D., Filippini, M., Ursino, M., Fattori, P., Magosso, E.: Motor decoding from the posterior parietal cortex using deep neural networks. J. Neural Eng. 20(3), 036016 (2023). http://dx.doi.org/10.1088/1741-2552/acd1b6

  6. Borra, D., Filippini, M., Ursino, M., Fattori, P., Magosso, E.: Convolutional neural networks reveal properties of reach-to-grasp encoding in posterior parietal cortex. Comput. Biol. Med. 172, 108188 (2024). http://dx.doi.org/10.1016/j.compbiomed.2024.108188

  7. Borra, D., Magosso, E.: Deep learning-based EEG analysis: investigating P3 ERP components. J. Integr. Neurosci. 20(4), 791–811 (2021). http://dx.doi.org/10.31083/j.jin2004083

  8. Borra, D., Mondini, V., Magosso, E., Müller-Putz, G.R.: Decoding movement kinematics from EEG using an interpretable convolutional neural network. Comput. Biol. Med. 165, 107323 (2023). http://dx.doi.org/10.1016/j.compbiomed.2023.107323

  9. Brusini, L., Stival, F., Setti, F., Menegatti, E., Menegaz, G., Storti, S.F.: A systematic review on motor-imagery brain-connectivity-based computer interfaces. IEEE Trans. Hum.-Mach. Syst. 51(6), 725–733 (2021). http://dx.doi.org/10.1109/THMS.2021.3115094

  10. Filippini, M., Borra, D., Ursino, M., Magosso, E., Fattori, P.: Decoding sensorimotor information from superior parietal lobule of macaque via convolutional neural networks. Neural Netw. 151, 276–294 (2022). http://dx.doi.org/10.1016/j.neunet.2022.03.044

  11. Hu, S., Wang, H., Zhang, J., Kong, W., Cao, Y., Kozma, R.: Comparison analysis: granger causality and new causality and their applications to motor imagery. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1429–1444 (2016). http://dx.doi.org/10.1109/TNNLS.2015.2441137

  12. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 15(5), 056013 (2018). https://doi.org/10.1088/1741-2552/aace8c

  13. Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018). http://dx.doi.org/10.1088/1741-2552/aab2f2

  14. Neuper, C., Wörtz, M., Pfurtscheller, G.: ERD/ERS patterns reflecting sensorimotor activation and deactivation, pp. 211–222. Elsevier (2006). http://dx.doi.org/10.1016/S0079-6123(06)59014-4

  15. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019). http://dx.doi.org/10.1088/1741-2552/ab260c

  16. Salami, A., Andreu-Perez, J., Gillmeister, H.: EEG-ITNet: an explainable inception temporal convolutional network for motor imagery classification. IEEE Access 10, 36672–36685 (2022). http://dx.doi.org/10.1109/ACCESS.2022.3161489

  17. Santamaría-Vázquez, E., Martínez-Cagigal, V., Vaquerizo-Villar, F., Hornero, R.: EEG-inception: a novel deep convolutional neural network for assistive ERP-based brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 28(12), 2773–2782 (2020). http://dx.doi.org/10.1109/TNSRE.2020.3048106

  18. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017). https://doi.org/10.1002/hbm.23730

  19. Seth, A.K., Barrett, A.B., Barnett, L.: Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35(8), 3293–3297 (2015). http://dx.doi.org/10.1523/JNEUROSCI.4399-14.2015

  20. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences (2017). https://doi.org/10.48550/ARXIV.1704.02685, https://arxiv.org/abs/1704.02685

  21. Simões, M., et al.: BCIAUT-P300: a multi-session and multi-subject benchmark dataset on autism for p300-based brain-computer-interfaces. Front. Neurosci. 14 (2020). http://dx.doi.org/10.3389/fnins.2020.568104

  22. Sujatha Ravindran, A., Contreras-Vidal, J.: An empirical comparison of deep learning explainability approaches for EEG using simulated ground truth. Sci. Rep. 13(1) (2023). http://dx.doi.org/10.1038/s41598-023-43871-8

  23. Tangermann, M., et al.: Review of the BCI competition IV. Front. Neurosci. 6 (2012). https://doi.org/10.3389/fnins.2012.00055

  24. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). http://dx.doi.org/10.1016/s1388-2457(02)00057-3

Download references

Acknowledgments

This research was co-funded by the Italian Complementary National Plan PNC-I.1 “Research initiatives for innovative technologies and pathways in the health and welfare sector” D.D. 931 of 06/06/2022, “DARE - DigitAl lifelong pRevEntion” initiative, code PNC0000002, CUP: B53C22006450001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Borra .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borra, D., Ravanelli, M. (2024). Explaining Network Decision Provides Insights on the Causal Interaction Between Brain Regions in a Motor Imagery Task. In: Suen, C.Y., Krzyzak, A., Ravanelli, M., Trentin, E., Subakan, C., Nobile, N. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2024. Lecture Notes in Computer Science(), vol 15154. Springer, Cham. https://doi.org/10.1007/978-3-031-71602-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71602-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71601-0

  • Online ISBN: 978-3-031-71602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics