Abstract
Convolutional neural networks (CNNs) have revolutionized motor decoding from electroencephalographic (EEG) signals, showcasing their ability to outperform traditional machine learning, especially for Brain-Computer Interface (BCI) applications. By processing also other recording modalities (e.g., electromyography, EMG) together with EEG signals, motor decoding improved. However, multi-modal algorithms for decoding hand movements are mainly applied to simple movements (e.g., wrist flexion/extension), while their adoption for decoding complex movements (e.g., different grip types) is still under-investigated. In this study, we recorded EEG and EMG signals from 12 participants while they performed a delayed reach-to-grasping task towards one out of four possible objects (a handle, a pin, a card, and a ball), and we addressed multi-modal EEG+EMG decoding with a dual-branch CNN. Each branch of the CNN was based on EEGNet. The performance of the multi-modal approach was compared to mono-modal baselines (based on EEG or EMG only). The multi-modal EEG+EMG pipeline outperformed the EEG-based pipeline during movement initiation, while it outperformed the EMG-based pipeline in motor preparation. Finally, the multi-modal approach was capable of accurately discriminating between grip types widely during the task, especially from movement initiation. Our results further validate multi-modal decoding for potential future BCI applications, aiming at achieving a more natural user experience.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The study was approved by the Bioethics Committee of the University of Bologna (protocol code: 61243, date of approval: 15 March 2021).
References
Borra, D., Bossi, F., Rivolta, D., Magosso, E.: Deep learning applied to EEG source-data reveals both ventral and dorsal visual stream involvement in holistic processing of social stimuli. Sci. Rep. 13(1) (2023). http://dx.doi.org/10.1038/s41598-023-34487-z
Borra, D., Fantozzi, S., Bisi, M.C., Magosso, E.: Modulations of cortical power and connectivity in alpha and beta bands during the preparation of reaching movements. Sensors 23(7), 3530 (2023). http://dx.doi.org/10.3390/s23073530
Borra, D., Fantozzi, S., Magosso, E.: EEG motor execution decoding via interpretable Sinc-convolutional neural networks. In: Henriques, J., Neves, N., de Carvalho, P. (eds.) MEDICON 2019. IP, vol. 76, pp. 1113–1122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31635-8_135
Borra, D., Filippini, M., Ursino, M., Fattori, P., Magosso, E.: Motor decoding from the posterior parietal cortex using deep neural networks. J. Neural Eng. 20(3), 036016 (2023). http://dx.doi.org/10.1088/1741-2552/acd1b6
Borra, D., Filippini, M., Ursino, M., Fattori, P., Magosso, E.: Convolutional neural networks reveal properties of reach-to-grasp encoding in posterior parietal cortex. Comput. Biol. Med. 172, 108188 (2024). http://dx.doi.org/10.1016/j.compbiomed.2024.108188
Borra, D., Magosso, E.: Deep learning-based EEG analysis: investigating P3 ERP components. J. Integr. Neurosci. 20(4), 791–811 (2021). http://dx.doi.org/10.31083/j.jin2004083
Borra, D., Mondini, V., Magosso, E., Müller-Putz, G.R.: Decoding movement kinematics from EEG using an interpretable convolutional neural network. Comput. Biol. Med. 165, 107323 (2023). http://dx.doi.org/10.1016/j.compbiomed.2023.107323
Deng, X., Zhang, B., Yu, N., Liu, K., Sun, K.: Advanced TSGL-EEGNet for motor imagery EEG-based brain-computer interfaces. IEEE Access 9, 25118–25130 (2021). http://dx.doi.org/10.1109/ACCESS.2021.3056088
Dremstrup, K., Gu, Y., Nascimento, O.F.D., Farina, D.: Movement-related cortical potentials and their application in brain-computer interfacing. In: Farina, D., Jensen, W., Akay, M. (eds.) Introduction to Neural Engineering for Motor Rehabilitation (2013). http://dx.doi.org/10.1002/9781118628522.ch13
Filippini, M., Borra, D., Ursino, M., Magosso, E., Fattori, P.: Decoding sensorimotor information from superior parietal lobule of macaque via convolutional neural networks. Neural Netw. 151, 276-294 (2022). http://dx.doi.org/10.1016/j.neunet.2022.03.044
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). http://dx.doi.org/10.1145/358669.358692
Kim, S., Shin, D.Y., Kim, T., Lee, S., Hyun, J.K., Park, S.M.: Enhanced recognition of amputated wrist and hand movements by deep learning method using multimodal fusion of electromyography and electroencephalography. Sensors 22(2), 680 (2022). http://dx.doi.org/10.3390/s22020680
Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 15(5), 056013 (2018). https://doi.org/10.1088/1741-2552/aace8c
Leeb, R., Sagha, H., Chavarriaga, R., Millán, J.D.R.: A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities. J. Neural Eng. 8(2), 025011 (2011). http://dx.doi.org/10.1088/1741-2560/8/2/025011
Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018). http://dx.doi.org/10.1088/1741-2552/aab2f2
Matran-Fernandez, A., Rodríguez Martínez, I.J., Poli, R., Cipriani, C., Citi, L.: Seeds, simultaneous recordings of high-density EMG and finger joint angles during multiple hand movements. Sci. Data 6(1) (2019). http://dx.doi.org/10.1038/s41597-019-0200-9
Neuper, C., Wörtz, M., Pfurtscheller, G.: ERD/ERS patterns reflecting sensorimotor activation and deactivation, pp. 211–222. Elsevier (2006). http://dx.doi.org/10.1016/S0079-6123(06)59014-4
Ofner, P., Schwarz, A., Pereira, J., Müller-Putz, G.R.: Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLOS ONE 12(8), e0182578 (2017). http://dx.doi.org/10.1371/journal.pone.0182578
Riyad, M., Khalil, M., Adib, A.: MI-EEGNET: a novel convolutional neural network for motor imagery classification. J. Neurosci. Methods 353, 109037 (2021). http://dx.doi.org/10.1016/j.jneumeth.2020.109037
Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019). http://dx.doi.org/10.1088/1741-2552/ab260c
Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017). https://doi.org/10.1002/hbm.23730
Simões, M., et al.: BCIAUT-P300: a multi-session and multi-subject benchmark dataset on autism for p300-based brain-computer-interfaces. Front. Neurosci. 14 (2020). http://dx.doi.org/10.3389/fnins.2020.568104
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). http://dx.doi.org/10.1016/s1388-2457(02)00057-3
Xu, D., Tang, F., Li, Y., Zhang, Q., Feng, X.: An analysis of deep learning models in SSVEP-based BCI: a survey. Brain Sci. 13(3), 483 (2023). http://dx.doi.org/10.3390/brainsci13030483
Acknowledgments
This work is supported by #NEXTGENERATIONEU (NGEU) and funded by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), project MNESYS (PE0000006)—A Multiscale integrated approach to the study of the nervous system in health and disease (DN. 1553 11.10.2022).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Borra, D., Fraternali, M., Ravanelli, M., Magosso, E. (2024). Multi-modal Decoding of Reach-to-Grasping from EEG and EMG via Neural Networks. In: Suen, C.Y., Krzyzak, A., Ravanelli, M., Trentin, E., Subakan, C., Nobile, N. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2024. Lecture Notes in Computer Science(), vol 15154. Springer, Cham. https://doi.org/10.1007/978-3-031-71602-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-71602-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71601-0
Online ISBN: 978-3-031-71602-7
eBook Packages: Computer ScienceComputer Science (R0)