Skip to main content

A Novel Sensor Clustering Algorithm for UAV-Assisted Wireless Sensor Networks

  • Conference paper
  • First Online:
Proceedings of the 10th International Conference on Advanced Intelligent Systems and Informatics 2024 (AISI 2024)

Abstract

In wireless sensor networks (WSNs), unmanned aerial vehicles (UAVs) contribute to improving network throughput and extending its lifetime, since sensors are energy-limited devices. This study aims to optimize the efficiency of UAV data collection from WSNs by minimizing the required number of hovering locations (HLs) while ensuring successful data transmission from each sensor to the UAV in a single trip. The reduction of HLs is crucial for optimizing the UAV trajectory. To this end, we propose an efficient algorithm to partition sensors into clusters with a specified radius, denoted as R. Numerical results show that the proposed algorithm performs compared to the adaptive K-means clustering algorithm in terms of the number of HLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nguyen, M.T., Nguyen, C.V., Do, H.T., et al.: UAV-assisted data collection in wireless sensor networks: a comprehensive survey. Electronics 10(21), 2603 (2021)

    Article  Google Scholar 

  2. Mkiramweni, M.E., Yang, C., Li, J., Zhang, W.: A survey of game theory in unmanned aerial vehicles communications. IEEE Commun. Surv. Tutor. 21(4), 3386ā€“3416 (2019). https://doi.org/10.1109/COMST.2019.2919613

    Article  Google Scholar 

  3. Alfattani, S., Jaafar, W., Yanikomeroglu, H., Yongacoglu, A.: Multi-UAV data collection framework for wireless sensor networks. In: IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, pp. 1ā€“6 (2019). https://doi.org/10.1109/GLOBECOM38437.2019.9014306

  4. Binol, H., Bulut, E., Akkaya, K., Guvenc, I.: Time optimal multi-UAV path planning for gathering its data from roadside units. In: IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, pp. 1ā€“5 (2018). https://doi.org/10.1109/VTCFall.2018.8690730

  5. Saxena, K., Gupta, N., Gupta, J., et al.: Trajectory optimization for the UAV assisted data collection in wireless sensor networks. Wirel. Netw. 28, 1785ā€“1796 (2022). https://doi.org/10.1007/s11276-022-02934-w

    Article  Google Scholar 

  6. Li, X., Tan, J., Liu, A., Vijayakumar, P., Kumar, N., Alazab, M.: A novel UAV-enabled data collection scheme for intelligent transportation system through UAV speed control. IEEE Trans. Intell. Transp. Syst. 22(4), 2100ā€“2110 (2021). https://doi.org/10.1109/TITS.2020.3040557

    Article  Google Scholar 

  7. Wang, K., et al.: UAV-based and energy-constrained data collection system with trajectory, time, and collection scheduling optimization. In: 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, pp. 893ā€“898 (2021). https://doi.org/10.1109/ICCC52777.2021.9580291.

  8. Li, Y., et al.: Data collection maximization in IoT-sensor networks via an energy-constrained UAV. IEEE Trans. Mob. Comput. 22(1), 159ā€“174 (2023). https://doi.org/10.1109/TMC.2021.3084972

    Article  Google Scholar 

  9. Wang, Y., Chen, M., Pan, C., Wang, K., Pan, Y.: Joint optimization of UAV trajectory and sensor uploading powers for UAV-assisted data collection in wireless sensor networks. IEEE Internet Things J. 9(13), 11214ā€“11226 (2022). https://doi.org/10.1109/JIOT.2021.3126329

    Article  Google Scholar 

  10. Prates, M., Avelar, P.H.C., Lemos, H., et al.: Learning to solve NP-complete problems: a graph neural network for decision TSP. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4731ā€“4738 (2019)

    Google Scholar 

  11. Deb, S., Fong, S., Tian, Z., et al.: Finding approximate solutions of NP-hard optimization and TSP problems using elephant search algorithm. J. Supercomput. 72, 3960ā€“3992 (2016)

    Article  Google Scholar 

  12. Ahmed, M., Seraj, R., Islam, S.M.S.: The \(K\)-means algorithm: a comprehensive survey and performance evaluation. Electronics 9(8), 1295 (2020)

    Article  Google Scholar 

  13. Srinivas, A., Zussman, G., Modiano, E.: Construction and maintenance of wireless mobile backbone networks. IEEE/ACM Trans. Netw. 17(1), 239ā€“252 (2009)

    Article  Google Scholar 

  14. Hacizade, U., Kaya, I.: GA based traveling salesman problem solution and its application to transport routes optimization. IFAC-PapersOnLine 51(30), 620ā€“625 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Haqiq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elidrissi, A., Casado Gonzales, R., Haqiq, A., Orozco-Barbosa, L. (2024). A Novel Sensor Clustering Algorithm for UAV-Assisted Wireless Sensor Networks. In: Hassanien, A.E., Darwish, A., F. Tolba, M., Snasel, V. (eds) Proceedings of the 10th International Conference on Advanced Intelligent Systems and Informatics 2024. AISI 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-031-71619-5_1

Download citation

Publish with us

Policies and ethics