Skip to main content

Overview of the Trauma THOMPSON Challenge at MICCAI 2023

  • Conference paper
  • First Online:
AI for Brain Lesion Detection and Trauma Video Action Recognition (TTC 2023, BONBID-HIE 2023)

Abstract

This paper introduces the initial edition of the Trauma TeleHelper for Operational Medical Procedure Support and Offline Network (Trauma THOMPSON) Challenge. It was organized as a satellite event of the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2023. The challenge contains two tracks and four tasks related to automatic analysis of videos and images about emergency care procedures under resource constrained environments. The three tasks for Track 1, are (1) action recognition; (2) action anticipation; and (3) activity recognition. For Track 2, the only task was visual question answering. The videos were recorded by a team of doctors from the first-person view and annotated by medical professionals. The data were split into 70% for training and 30% for testing. For Task 1, the best method using VideoSwin with Swin-S and ThreeCrop achieved a Top 1 accuracy of 35.27%. For Task 2, the best method using VideoSwin with Swin-S and CenterCrop achieved Top 1 accuracy of 23.67%. No submission was received for Task 3. For the VQA task, the best method relying on MCAN-large with VinVL and FQCA obtained an accuracy of 74.35%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, D., Yoon, S.N.: Application of artificial intelligence-based technologies in the healthcare industry: opportunities and challenges. IJERPH 18(1), 271 (2021). https://doi.org/10.3390/ijerph18010271

    Article  Google Scholar 

  2. Wahl, B., Cossy-Gantner, A., Germann, S., Schwalbe, N.R.: Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob. Health 3(4), e000798 (2018). https://doi.org/10.1136/bmjgh-2018-000798

    Article  Google Scholar 

  3. Buffie, E.F., Adam, C., Zanna, L.-F., Kpodar, K.: Loss-of-learning and the post-Covid recovery in low-income countries. J. Macroecon. 75, 103492 (2023). https://doi.org/10.1016/j.jmacro.2022.103492

    Article  Google Scholar 

  4. Toole, M.J., Waldman, R.J.: The public health aspects of complex emergencies and refugee situations. Annu. Rev. Public Health 18, 283–312 (1997). https://doi.org/10.1146/annurev.publhealth.18.1.283

    Article  Google Scholar 

  5. Welling, D.R., Ryan, J.M., Burris, D.G., Rich, N.M.: Seven Sins Humanit. Med. World J. Surg. 34(3), 466–470 (2010). https://doi.org/10.1007/s00268-009-0373-z

    Article  Google Scholar 

  6. Stewart, T., Bird, P.: Health economic evaluation: cost-effective strategies in humanitarian and disaster relief medicine. BMJ Mil Health (2022). https://doi.org/10.1136/bmjmilitary-2021-001859

    Article  Google Scholar 

  7. Shackelford, S.A., et al.: Case-control analysis of prehospital death and prolonged field care survival during recent US military combat operations. J. Trauma Acute Care Surg. 91(2), S186–S193 (2021). https://doi.org/10.1097/TA.0000000000003252

    Article  Google Scholar 

  8. Riesberg, J., Powell, D., Loos, P.: The loss of the golden hour. Spec. Warfare Mag 30(1), 49–51 (2017)

    Google Scholar 

  9. Eastridge, B.J., et al.: Death on the battlefield (2001–2011): implications for the future of combat casualty care. J. Trauma Acute Care Surg. 73(6), S431–S437 (2012). https://doi.org/10.1097/TA.0b013e3182755dcc

    Article  Google Scholar 

  10. Eastridge, B.J., et al.: Died of wounds on the battlefield: causation and implications for improving combat casualty care. J. Trauma Inj. Infect. Crit. Care 71(1), S4–S8 (2011). https://doi.org/10.1097/TA.0b013e318221147b

  11. Johri, P., Diván, M.J., Khanam, R., Marciszack, M., Will, A. (eds.): Trends and Advancements of Image Processing and Its Applications. EAI/Springer Innovations in Communication and Computing. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-75945-2. isbn 978-3-030-75944-5 978-3-030-75945-2

  12. Jiang, H., et al.: A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. Comput. Biol. Med. 157, 106726 (2023). https://doi.org/10.1016/j.compbiomed.2023.106726

    Article  Google Scholar 

  13. Kaur, R., Singh, S.: A comprehensive review of object detection with deep learning. Digit. Sig. Process. 132, 103812 (2023). https://doi.org/10.1016/j.dsp.2022.103812

    Article  Google Scholar 

  14. Ghandi, T., Pourreza, H., Mahyar, H.: Deep learning approaches on image captioning: a review. ACM Comput. Surv. 56(3), 1–39 (2024). https://doi.org/10.1145/3617592

    Article  Google Scholar 

  15. Lin, Z., et al.: Medical visual question answering: a survey. Artif. Intell. Med. 143, 102611 (2023). https://doi.org/10.1016/j.artmed.2023.102611

    Article  Google Scholar 

  16. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild (2012). arXiv: 1212.0402[cs]

    Google Scholar 

  17. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, Barcelona, Spain, pp. 2556–2563. IEEE (2011). https://doi.org/10.1109/ICCV.2011.6126543

  18. Kay, W., et al.: The kinetics human action video dataset (2017). https://doi.org/10.48550/ARXIV.1705.06950

  19. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense (2017). https://doi.org/10.48550/ARXIV.1706.04261

  20. Gu, C., et al.: AVA: a video dataset of spatio-temporally localized atomic visual actions (2018). arXiv: 1705.08421[cs]

    Google Scholar 

  21. Pirsiavash, H., Ramanan, D.: Detecting activities of daily living in first-person camera views. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, pp. 2847–2854. IEEE (2012). https://doi.org/10.1109/CVPR.2012.6248010

  22. Li, Y., Liu, M., Rehg, J.M.: In the eye of the beholder: gaze and actions in first person video (2020). arXiv: 2006.00626[cs]

    Google Scholar 

  23. Damen, D., et al.: Scaling egocentric vision: the EPIC-KITCHENS dataset (2018). arXiv: 1804.02748[cs]

    Google Scholar 

  24. Jiang, N., et al.: Baseline models for action recognition of unscripted casualty care dataset. In: Waiter, G., Lambrou, T., Leontidis, G., Oren, N., Morris, T., Gordon, S. (eds.) MIUA 2023. LNCS, vol. 1412, pp. 215–227. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-48593-0_16

  25. Zhuo, Y., et al.: TON-ViT: a neuro-symbolic AI based on task oriented network with a vision transformer. In: Waiter, G., Lambrou, T., Leontidis, G., Oren, N., Morris, T., Gordon, S. (eds.) MIUA 2023. LNCS, vol. 14122, pp. 157–170. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-48593-0_12

  26. Paydar, S., et al.: Tube thoracostomy (chest tube) removal in traumatic patients: what do we know? What can we do? Bull. Emerg. Trauma 3(2), 37–40 (2015)

    MathSciNet  Google Scholar 

  27. Mould-Millman, N.-K., et al.: Prolonged casualty care: extrapolating civilian data to the military context. J. Trauma Acute Care Surg. 93(2), S78–S85 (2022). https://doi.org/10.1097/TA.0000000000003675

    Article  Google Scholar 

  28. Liu, X., Liang, G.: Action recognition and action anticipation tasks in the trauma THOMPSON challenge, Technical report

    Google Scholar 

  29. Vuong, T.T.L., Bui, D.C., Kwak, J.T.: QuIIL at T3 challenge: towards automation in life-saving intervention procedures from first-person view

    Google Scholar 

  30. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics - ACL 2002, Philadelphia, Pennsylvania, p. 311. Association for Computational Linguistics (2001). https://doi.org/10.3115/1073083.1073135

  31. Lin, N., Cai, M.: EPIC-KITCHENS-100 unsupervised domain adaptation challenge for action recognition 2022: team HNU-FPV, Technical report (2022). arXiv: 2207.03095[cs]

    Google Scholar 

  32. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering (2016). https://doi.org/10.48550/ARXIV.1612.00837

  33. Fathi, A., Ren, X., Rehg, J.M.: Learning to recognize objects in egocentric activities. In: CVPR 2011, Colorado Springs, CO, USA, pp. 3281–3288. IEEE (2011). https://doi.org/10.1109/CVPR.2011.5995444

  34. Nwoye, C.I., et al.: Rendezvous: attention mechanisms for the recognition of surgical action triplets in endoscopic videos. Med. Image Anal. 78, 102433 (2022). https://doi.org/10.1016/j.media.2022.102433. arXiv: 2109.03223[cs]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Wachs .

Editor information

Editors and Affiliations

Additional information

Disclaimers: The views expressed are those of the author(s) and do not reflect the official policy of the Department of the Army, the Department of Defense, or the U.S. Government. The investigators have adhered to the policies for the protection of human subjects as prescribed in 45 CFR 46.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuo, Y. et al. (2025). Overview of the Trauma THOMPSON Challenge at MICCAI 2023. In: Bao, R., Grant, E., Kirkpatrick, A., Wachs, J., Ou, Y. (eds) AI for Brain Lesion Detection and Trauma Video Action Recognition. TTC BONBID-HIE 2023 2023. Lecture Notes in Computer Science, vol 14567. Springer, Cham. https://doi.org/10.1007/978-3-031-71626-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71626-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71625-6

  • Online ISBN: 978-3-031-71626-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics