Abstract
Additive Manufacturing (AM) is on the forefront of innovative advance manufacturing techniques leveraging Artificial Intelligence (AI) and Machine Learning (ML) to improve processing capabilities. We conducted a literature review to survey the current state of the art for AI/ML applications within Material Extrusion AM (MEX-AM). Furthermore, this study explored the intersection of AI applications and use of Carbon Fiber-Reinforced Polymers (CFRP) as a MEX-AM material. We found that while discontinuous CFRPs are covered in several experimental studies, there was a noticeable lack of research on continuous CFRPs among the collected papers. We found that the most common ML Solution for quality issues in MEX-AM was the artificial neural network feed forward supervised learning back propagation (ANN-FFNN-SL-BPN) Solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
References
Mittal, S., Khan, M.A., Romero, D., Wuest, T.: Smart manufacturing: Characteristics, technologies and enabling factors. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233(5), 1342–1361 (2019). https://doi.org/10.1177/0954405417736547
Javaid, M., Haleem, A., Singh, R.P., Suman, R., Rab, S.: Role of additive manufacturing applications towards environmental sustainability. Adv. Ind. Eng. Polym. Res. 4(4), 312–322 (2021). https://doi.org/10.1016/j.aiepr.2021.07.005
Kellens, K., Mertens, R., Paraskevas, D., Dewulf, W., Duflou, J.R.: Environmental impact of additive manufacturing processes: does AM contribute to a more sustainable way of part manufacturing? Procedia CIRP 61, 582–587 (2017). https://doi.org/10.1016/j.procir.2016.11.153
Kellens, K., Baumers, M., Gutowski, T.G., Flanagan, W., Lifset, R., Duflou, J.R.: Environmental dimensions of additive manufacturing: mapping application domains and their environmental implications. J. Ind. Ecol. 21(S1) (20170. https://doi.org/10.1111/jiec.12629
Mamo, H.B., Adamiak, M., Kunwar, A.: 3D printed biomedical devices and their applications: a review on state-of-the-art technologies, existing challenges, and future perspectives. J. Mech. Behav. Biomed. Mater. 143, 105930 (2023). https://doi.org/10.1016/j.jmbbm.2023.105930
Babu, S.S., Mourad, A.-H.I., Harib, K.H., Vijayavenkataraman, S.: Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual Phys. Prototyp. 18(1), e2141653 (2023). https://doi.org/10.1080/17452759.2022.2141653
Lu, L., Hou, J., Yuan, S., Yao, X., Li, Y., Zhu, J.: Deep learning-assisted real-time defect detection and closed-loop adjustment for additive manufacturing of continuous fiber-reinforced polymer composites. Robot. Comput.-Integr. Manuf. 79, 102431 (2023). https://doi.org/10.1016/j.rcim.2022.102431
Harik, R., Wuest, T.: Introduction to advanced manufacturing. SAE International (2019)
Adil, S., Lazoglu, I.: A review on additive manufacturing of carbon fiber-reinforced polymers: current methods, materials, mechanical properties, applications and challenges. J. Appl. Polym. Sci. 140(7), e53476 (2023). https://doi.org/10.1002/app.53476
Sheoran, A.J., Kumar, H.: Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: review and reflection on present research. Mater. Today Proc. 21, 1659–1672 (2020). https://doi.org/10.1016/j.matpr.2019.11.296
Farahani, M.A., et al.: Time-series pattern recognition in Smart Manufacturing Systems: a literature review and ontology. J. Manuf. Syst. 69, 208–241 (2023). https://doi.org/10.1016/j.jmsy.2023.05.025
Aria, M., Cuccurullo, C.: Bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informetr. 11(4), 959–975 (2017). https://doi.org/10.1016/j.joi.2017.08.007
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021). https://doi.org/10.1136/bmj.n71
Hashmi, A.W., et al.: Abrasive flow finishing of 3D-Printed Aerofoils: Design, numerical Simulation, and experimental analysis. Opt. Laser Technol. 174, 110578 (2024). https://doi.org/10.1016/j.optlastec.2024.110578
Caminero, M.Á., Gutiérrez, A.R., Chacón, J.M., García-Plaza, E., Núñez, P.J.: Effects of fused filament fabrication parameters on the manufacturing of 316L stainless-steel components: geometric and mechanical properties. Rapid Prototyp. J. 28(10), 2004–2026 (2022). https://doi.org/10.1108/RPJ-01-2022-0023
Gao, T., Li, A., Zhang, X., Harris, G., Liu, J.: A data-driven process-quality-property analytical framework for conductive composites in additive manufacturing. Manuf. Lett. 35, 626–635 (2023). https://doi.org/10.1016/j.mfglet.2023.08.050
Zhang, Z., Femi-Oyetoro, J., Fidan, I., Ismail, M., Allen, M.: Prediction of dimensional changes of low-cost metal material extrusion fabricated parts using machine learning techniques. Engineering, preprint (2021). https://doi.org/10.20944/preprints202102.0570.v1
Dritsas, S., Ravindran, R., Hoo, J.L., Fernandez, J.G.: Shrinkage prediction and correction in material extrusion of cellulose-chitin biopolymers using neural network regression. Virtual Phys. Prototyp. 18(1), e2225039 (2023). https://doi.org/10.1080/17452759.2023.2225039
Alhaddad, W., He, M., Halabi, Y., Almajhali, K.Y.M.: Optimizing the material and printing parameters of the additively manufactured fiber-reinforced polymer composites using an artificial neural network model and artificial bee colony algorithm. Structures 46, 1781–1795 (2022). https://doi.org/10.1016/j.istruc.2022.10.134
Goh, G.D., Hamzah, N.M.B., Yeong, W.Y.: Anomaly detection in fused filament fabrication using machine learning. 3D Print. Addit. Manuf. 10(3), 428–437 (2023). https://doi.org/10.1089/3dp.2021.0231
Malleswari, V.N., Manaswy, G.K., Pragvamsa, P.G.: Prediction of surface roughness for fused deposition in fabricated work pieces by RSM and ANN technique. Mater. Today Proc. S2214785323014244 (2023). https://doi.org/10.1016/j.matpr.2023.03.378
Saad, M.S., Nor, A.M., Rahim, I.A., Syahruddin, M.A., Darus, I.Z.M.: Optimization of FDM process parameters to minimize surface roughness with integrated artificial neural network model and symbiotic organism search. Neural Comput. Appl. 34(20), 17423–17439 (2022). https://doi.org/10.1007/s00521-022-07370-7
Sai, T., Pathak, V.K., Srivastava, A.K.: Modeling and optimization of fused deposition modeling (FDM) process through printing PLA implants using adaptive neuro-fuzzy inference system (ANFIS) model and whale optimization algorithm. J. Braz. Soc. Mech. Sci. Eng. 42(12), 617 (2020). https://doi.org/10.1007/s40430-020-02699-3
Singh, J., Goyal, K.K., Kumar, R., Gupta, V.: Development of artificial intelligence-based neural network prediction model for responses of additive manufactured polylactic acid parts. Polym. Compos. 43(8), 5623–5639 (2022). https://doi.org/10.1002/pc.26876
Moradi, M., Beygi, R., Mohd. Yusof, N., Amiri, A., Da Silva, L.F.M., Sharif, S.: 3D printing of acrylonitrile butadiene styrene by fused deposition modeling: artificial neural network and response surface method analyses. J. Mater. Eng. Perform. 32(4), 2016–2028 (2023). https://doi.org/10.1007/s11665-022-07250-0
García, E., Núñez, P.J., Caminero, M.A., Chacón, J.M., Kamarthi, S.: Effects of carbon fibre reinforcement on the geometric properties of PETG-based filament using FFF additive manufacturing. Compos. Part B Eng. 235, 109766 (2022). https://doi.org/10.1016/j.compositesb.2022.109766
Mishra, P., Sood, S., Bharadwaj, V., Aggarwal, A., Khanna, P.: Parametric modeling and optimization of dimensional error and surface roughness of fused deposition modeling printed polyethylene terephthalate glycol parts. Polymers 15(3), 546 (2023). https://doi.org/10.3390/polym15030546
Blakey-Milner, B., et al.: Metal additive manufacturing in aerospace: a review. Mater. Des. 209, 110008 (2021). https://doi.org/10.1016/j.matdes.2021.110008
Li, Y., Zhao, W., Li, Q., Wang, T., Wang, G.: In-Situ monitoring and diagnosing for fused filament fabrication process based on vibration sensors. Sensors 19(11), 2589 (2019). https://doi.org/10.3390/s19112589
Raj, A., Tyagi, B., Goyal, A., Sahai, A., Sharma, R.S.: Comparing the predictability of soft computing and statistical techniques for the prediction of tensile strength of additively manufactured carbon fiber polylactic acid parts. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08844-y
Sandeep, D.C., Gupta, R.K.: Optimization of FDM printing parameters for surface quality improvement of carbon based nylon (PA-CF) composite material fabricated parts using evolutionary algorithm. J. Nano- Electron. Phys. 13(2), 02004-1–02004-5 (2021). https://doi.org/10.21272/jnep.13(2).02004
Taghizadeh, B., Ehteshamfar, M.V., Adibi, H.: Lapping optimization of additively manufactured ABS-carbon fiber composite parts using the soft computing technique. Polym. Test. 128, 108241 (2023). https://doi.org/10.1016/j.polymertesting.2023.108241
Abdelhamid, Z., Mohamed, H., Kelouwani, S.: The use of machine learning in process–structure–property modeling for material extrusion additive manufacturing: a state-of-the-art review. J. Braz. Soc. Mech. Sci. Eng. 46(2), 70 (2024). https://doi.org/10.1007/s40430-023-04637-5
Hashmi, A.W., Mali, H.S., Meena, A., Ahmad, S., Tian, Y.: A novel eco-friendly abrasive media based abrasive flow machining of 3D printed PLA parts using IGWO and ANN. Rapid Prototyp. J. 29(10), 2019–2038 (2023). https://doi.org/10.1108/RPJ-04-2023-0136
Yadav, K., Rohilla, S., Ali, A., Yadav, M., Chhabra, D.: Effect of speed, acceleration, and jerk on surface roughness of FDM-fabricated parts. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08476-2
Li, Y., et al.: Machine learning-based operational state recognition and compressive property prediction in fused filament fabrication. 3D Print. Addit. Manuf. 10(6), 1347–1360 (2023). https://doi.org/10.1089/3dp.2021.0185
Nascimento, R., Martins, I., Dutra, T.A., Moreira, L.: Computer vision based quality control for additive manufacturing parts. Int. J. Adv. Manuf. Technol. 124(10), 3241–3256 (2023). https://doi.org/10.1007/s00170-022-10683-5
TwinCAT 3: Machine learning for all areas of automation. packmedia.net webmagazine. https://packmedia.net/machines/twincat-3-machine-learning-all-areas-automation. Accessed 14 Apr 2024
Acknowledgments
This ongoing effort is supported by Naval Air Systems Command (NAVAIR) a subsidiary of the U.S. Navy.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Harper, A., Wuest, T. (2024). An Explorative Study of AI Applications in Composite Material Extrusion Additive Manufacturing. In: Thürer, M., Riedel, R., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments. APMS 2024. IFIP Advances in Information and Communication Technology, vol 731. Springer, Cham. https://doi.org/10.1007/978-3-031-71633-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-71633-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71632-4
Online ISBN: 978-3-031-71633-1
eBook Packages: Computer ScienceComputer Science (R0)