Skip to main content

Abstract

The maritime industry is experiencing a transition towards the adoption of sustainable alternatives to traditional fossil fuels. The focus is on hydrogen due to its emergence as a feasible solution to the problem of pollution across the industry. The context comprises four value chains: those pertaining to the design, production, and management of fuel, ships and infrastructure (i.e., port and bunkering facilities); as well as the value chain associated with maritime operations (i.e., sea voyage between two ports). To successfully introduce hydrogen in maritime operations, the industry must be aligned in terms of the design and management of fuel, ships and infrastructure to accommodate the necessary changes. The study investigates the relationships within and between value chains, which can either support or hinder the transition. To this aim, a systematic literature review is performed. The analysis of 42 articles provides insights at the intersection of these value chains. The study identifies the decisional variables that will have implications on the industry at large, including the storage form of the fuel and related requirements, the design of the ship and its fuel consumption, and the availability of suitable supporting infrastructure. Finally, the aim is to examine current research trends, highlight any shortcomings, and identify future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim, S., Dodds, P.E., Butnar, I.: The position of ammonia in decarbonising maritime industry: an overview and perspectives: part I. Johnson Matthey Technol. Rev. 65(2), 263–274 (2021)

    Article  Google Scholar 

  2. Koilo, V.: Energy efficiency and green solutions in sustainable development: evidence from the Norwegian maritime industry. J. Prob. Perspect. Manage. 18(4), 289–302 (2020)

    Google Scholar 

  3. Wang, Z., et al.: Life cycle framework construction and quantitative assessment for the hydrogen fuelled ships: a case study. Ocean Eng. 281 (2023)

    Google Scholar 

  4. Prussi, M., Scarlat, N., Acciaro, M., Kosmas, V.: Potential and limiting factors in the use of alternative fuels in the European maritime sector. J. Clean Prod. 291 (2021)

    Google Scholar 

  5. Sarı, A., Sulukan, E., Özkan, D., Sıdkı Uyar, T.: Environmental impact assessment of hydrogen-based auxiliary power system onboard. Int. J. Hydrogen Energy 46(57), 29680–29693 (2021)

    Google Scholar 

  6. Practical Playbook for Maritime Decarbonisation-Value chain-based pathways towards zero-emission shipping (2022). www.nordicwestoffice.com

  7. SustainAbility, United Nations Environment Programme and United Nations Global Compact, Unchaining Value – Innovative Approaches to Sustainable Supply (2007)

    Google Scholar 

  8. Elkafas, A.G., Rivarolo, M., Gadducci, E., Magistri, L., Massardo, A.F.: Fuel cell systems for maritime: a review of research development, commercial products, applications, and perspectives. Processes 11(1) (2023)

    Google Scholar 

  9. Wang, Z., Wang, Y., Afshan, S., Hjalmarsson, J.: A review of metallic tanks for H2 storage with a view to application in future green shipping. Int. J. Hydrogen Energy 46(9), 6151–6179 (2021)

    Google Scholar 

  10. Mallouppas, G., Ioannou, C., Yfantis, E.A.: A Review of the latest trends in the use of green ammonia as an energy carrier in maritime industry. Energies 15(4) (2022)

    Google Scholar 

  11. Kim, M.S., Chun, K.W.: A comprehensive review on material compatibility and safety standards for liquid hydrogen cargo and fuel containment systems in marine applications. J. Mar. Sci. Eng. 11(10) (2023)

    Google Scholar 

  12. Kurien, C., Mittal, M.: Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines. Energy Convers. Manage. 251. Elsevier Ltd (2022)

    Google Scholar 

  13. Kaplinsky, R., Morris, M.: A Handbook for Value Chain Research (2001)

    Google Scholar 

  14. Sullivan, B.P., Ansaloni, G.M.M., Bionda, A., Rossi, M.: A life cycle perspective to sustainable hydrogen powered maritime systems – functional and technical requirements. Int. J. Prod. Lifecycle Manage. 14(2/3), 282 (2022)

    Article  Google Scholar 

  15. Hart, C.: Doing a Literature Review, Second Edition (1998)

    Google Scholar 

  16. Cronin, P., Ryan, F., Coughlan, M.: Undertaking a literature review: a step-by-step approach. Br. J. Nurs. 17(1), 38–43 (2008)

    Article  Google Scholar 

  17. Seuring, S., Gold, S.: Conducting content-analysis based literature reviews in supply chain management. Supply Chain Manage. Int. J. 17(5), 544–555 (2012)

    Article  Google Scholar 

  18. Shim, H., Kim, Y.H., Hong, J.P., Hwang, D., Kang, H.J.: Marine demonstration of alternative fuels on the basis of propulsion load sharing for sustainable ship design. J. Mar. Sci. Eng. 11(3) (2023)

    Google Scholar 

  19. Leo, T.J., Durango, J.A., Navarro, E.: Exergy analysis of PEM fuel cells for marine applications. Energy 35(2), 1164–1171 (2010)

    Article  Google Scholar 

  20. Xing, H., Stuart, C., Spence, S., Chen, H.: Fuel cell power systems for maritime applications: progress and perspectives. Sustainability 13(3), 1–34 (2021)

    Article  Google Scholar 

  21. Van Veldhuizen, B.N., Van Biert, L., Amladi, A., Woudstra, T., Visser, K., Aravind, P.V.: The effects of fuel type and cathode off-gas recirculation on combined heat and power generation of marine SOFC systems. Energy Convers. Manage. 276 (2023)

    Google Scholar 

  22. Benet, Á., Villalba-Herreros, A., d’Amore-Domenech, R., Leo, T.J: Knowledge gaps in fuel cell-based maritime hybrid power plants and alternative fuels. J. Power Sources 548 (2022)

    Google Scholar 

  23. Inal, O.B., Zincir, B., Deniz, C.: Investigation on the decarbonization of shipping: an approach to hydrogen and ammonia. Int. J. Hydrogen Energy 47(45), 19888–19900 (2022)

    Article  Google Scholar 

  24. Aneziris, O., Koromila, I.A., Gerbec, M., Nivolianitou, Z., Salzano, E.: A comparison of alternative cryogenic fuels for regional marine transportation from the perspective of safety. Chem. Eng. Trans. 100, 25–30 (2023)

    Google Scholar 

  25. Knight, S.: From LNG to hydrogen? The pitfalls and the possibilities. Motor Ship 99(1162), 36–40 (2018)

    Google Scholar 

  26. Hua, J., Wu, Y.H., Jin, P.F.: Prospects for renewable energy for seaborne transportation-Taiwan example. Renew. Energy 33(5), 1056–1063 (2008)

    Article  Google Scholar 

  27. Mojarrad, M., Farhoudian, S., Mikheenko, P.: Superconductivity and hydrogen economy: a roadmap to synergy. Energies 15(17) (2022)

    Google Scholar 

  28. Kim, K., Roh, G., Kim, W., Chun, K.: A preliminary study on an alternative ship propulsion system fueled by ammonia: environmental and economic assessments. J. Mar. Sci. Eng. 8(3) (2020)

    Google Scholar 

  29. El Gohary, M.M., Seddiek, I.S.: Utilization of alternative marine fuels for gas turbine power plant onboard ships. Int. J. Naval Architect. Ocean Eng. 5(1), 21–32 (2013)

    Article  Google Scholar 

  30. Palmén, M., Lotrič, A., Laakso, A., Bolbot, V., Elg, M., Valdez Banda, O.A.: Selecting appropriate energy source options for an arctic research ship. J. Mar. Sci. Eng. 11(12) (2023)

    Google Scholar 

  31. Kumar, S., Baalisampang, T., Arzaghi, E., Garaniya, V., Abbassi, R., Salehi, F.: Synergy of green hydrogen sector with offshore industries: Opportunities and challenges for a safe and sustainable hydrogen economy. J. Cleaner Prod. 384. Elsevier Ltd (2023)

    Google Scholar 

  32. Munim, Z.H., Chowdhury, M.M.H., Tusher, H.M., Notteboom, T.: Towards a prioritization of alternative energy sources for sustainable shipping. Mar. Policy 152 (2023)

    Google Scholar 

  33. Pyo, C., Kim, J., Kim, Y., Kim, M.: A study on a representative heat source model for simulating laser welding for liquid hydrogen storage containers. Mar. Struct. 86 (2022)

    Google Scholar 

  34. Van Hoecke, L., Laffineur, L., Campe, R., Perreault, P., Verbruggen, S.W., Lenaerts, S.: Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 14(2), 815–843. Royal Society of Chemistry (2021)

    Google Scholar 

  35. Rezk, H., Olabi, A.G., Abdelkareem, M.A., Alahmer, A., Sayed, E.T.: Maximizing green hydrogen production from water electrocatalysis: modeling and optimization. J. Mar. Sci. Eng. 11(3) (2023)

    Google Scholar 

  36. Xia, A., Jacob, A., Herrmann, C., Murphy, J.D.: Fermentative bio-hydrogen production from galactose. Energy 96, 346–354 (2016)

    Article  Google Scholar 

  37. Salmon, N., Bañares-Alcántara, R.: Impact of grid connectivity on cost and location of green ammonia production: Australia as a case study. Energy Environ. Sci. 14(12), 6655–6671 (2021)

    Article  Google Scholar 

  38. Sürer, M.G., Arat, H.T.: Advancements and current technologies on hydrogen fuel cell applications for marine vehicles. Int. J. Hydrogen Energy 47(45), 19865–19875 (2022)

    Article  Google Scholar 

  39. Strazza, C., Del Borghi, A., Costamagna, P., Traverso, A., Santin, M.: Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships. Appl. Energy 87(5), 1670–1678 (2010)

    Article  Google Scholar 

  40. Zhao, R., et al.: A numerical and experimental study of marine hydrogen-natural gas-diesel tri-fuel engines. Pol. Marit. Res. 27(4), 80–90 (2020)

    Article  Google Scholar 

  41. Soni, G., Neto, R.C., Moreira, L.: Hydrodynamic simulation of green hydrogen catamaran operating in Lisbon, Portugal. J. Mar. Sci. Eng. 11(12) (2023)

    Google Scholar 

  42. Stark, C., Xu, Y., Zhang, M., Yuan, Z., Tao, L., Shi, W.: Study on applicability of energy‐saving devices to hydrogen fuel cell‐powered ships. J. Mar. Sci. Eng. 10(3) (2022)

    Google Scholar 

  43. Hoang, A.T., et al.: Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: challenges and perspectives. Renew. Sustain. Energy Rev. 188. Elsevier Ltd (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bianchi, F., Rossi, M., Pero, M., Alfnes, E. (2024). Exploring the Hydrogen Transition Within the Maritime Value Chains. In: Thürer, M., Riedel, R., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments. APMS 2024. IFIP Advances in Information and Communication Technology, vol 732. Springer, Cham. https://doi.org/10.1007/978-3-031-71637-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71637-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71636-2

  • Online ISBN: 978-3-031-71637-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics