Abstract
Alzheimer’s disease is expected to reach a prevalence of 152 million people worldwide caused by the aggregation of amyloid \(\beta \)-proteins leading to apoptosis of neurons and loss of cognitive function. Although there is no effective treatment for this disease, molecules such as scyllo-inositol have been shown to be promising. Bacillus subtilis has been proposed as a suitable organism for the production of scyllo-inositol. Metabolic computational models have proven useful in the prediction of the production of a metabolite. However, most genome-scale metabolic models lack detailed parameters and tend to overestimate the production of a metabolite with respect to the consumption of medium resources. In order to reduce the solution space and, hence, obtain a more realistic model, additional constraints from experimental data can be added to the model. This work exploits the modeling capabilities of Flexible Nets to model the production of scyllo-inositol in a genome-scale metabolic model of Bacillus subtilis that has been previously enriched with proteomic and enzymatic data. We assess how these constraints limit the scyllo-inositol production to more realistic levels. Moreover, the integration of different types of constraints allowed us to uncover which one of them limits the production of scyllo-inositol for a given growth rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bekiaris, P.S., Klamt, S.: Automatic construction of metabolic models with enzyme constraints. BMC Bioinform. 21, 1–13 (2020)
Chang, A., et al.: BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 49(D1), D498–D508 (2020). ISSN 0305-1048. https://doi.org/10.1093/nar/gkaa1025
Chen, Y., et al.: Reconstruction, simulation and analysis of enzyme-constrained metabolic models using gecko toolbox 3.0. Nat. Protoc. 19(3), 1–39 (2024)
Domenzain, I., et al.: Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using gecko 2.0. Nat. Commun. 13(1), 3766 (2022)
Durot, M., Bourguignon, P.-Y., Schachter, V.: Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 33(1), 164–190 (2008). ISSN 0168-6445. https://doi.org/10.1111/j.1574-6976.2008.00146.x
Ebrahim, A., Lerman, J.A., Palsson, B.O., Hyduke, D.R.: COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst. Biol. 7(1), 74+, (2013). ISSN 1752-0509. https://doi.org/10.1186/1752-0509-7-74
Goelzer, A., et al.: Quantitative prediction of genome-wide resource allocation in bacteria. Metab. Eng. 32, 232–243 (2015). ISSN 1096-7176. https://doi.org/10.1016/j.ymben.2015.10.003, https://www.sciencedirect.com/science/article/pii/S1096717615001317
Gotsmy, M., et al.: Sulfate limitation increases specific plasmid DNA yield and productivity in E. coli fed-batch processes. Microb. Cell Fact. 22(1), 242 (2023)
Gu, C., Kim, G.B., Kim, W.J., Kim, H.U., Lee, S.Y.: Current status and applications of genome-scale metabolic models. Genome Biol. 20, 1–18 (2019)
Huang, Q., Szklarczyk, D., Wang, M., Simonovic, M., von Mering, C.: PaxDb 5.0: curated protein quantification data suggests adaptive proteome changes in yeasts. Mol. Cell. Proteomics 22(10), 100640 (2023)
Júlvez, J., Dikicioglu, D., Oliver, S.G.: Handling variability and incompleteness of biological data by flexible nets: a case study for Wilson disease. NPJ Syst. Biol. Appl. 4(1), 7 (2018)
Júlvez, J., Oliver, S.G.: Steady state analysis of flexible nets. IEEE Trans. Autom. Control 65(6), 2510–2525 (2020). https://doi.org/10.1109/TAC.2019.2931836
Kim, H.U., Kim, T.Y., Lee, S.Y.: Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen acinetobacter baumannii aye. Mol. BioSyst. 6(2), 339–348 (2010)
Lázaro, J., et al.: Combination of genome-scale models and bioreactor dynamics to optimize the production of commodity chemicals. Front. Mol. Biosci. 9, 855735 (2022)
Mao, L., Nicolae, A., Oliveira, M.A.P., He, F., Hachi, S., Fleming, R.M.T.: A constraint-based modelling approach to metabolic dysfunction in parkinson’s disease. Comput. Struct. Biotechnol. J. 13, 484–491 (2015). ISSN 2001-0370. https://doi.org/10.1016/j.csbj.2015.08.002. https://www.sciencedirect.com/science/article/pii/S2001037015000379
Massaiu, I., et al.: Integration of enzymatic data in bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-\(\gamma \)-glutamic acid production strains. Microb. Cell Fact. 18, 1–20 (2019)
Michon, C., Kang, C.-M., Karpenko, S., Tanaka, K., Ishikawa, S., Yoshida, K.: A bacterial cell factory converting glucose into scyllo-inositol, a therapeutic agent for alzheimer’s disease. Commun. Biol. 3(1), 93 (2020)
Milo, R.: What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35(12), 1050–1055 (2013)
Murata, T.: Petri nets: properties, analysis and applications. Procs. of the IEEE 77(4), 541–580 (1989)
Norsigian, C.J., et al.: BiGG models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 48(D1), D402–D406 (2019). ISSN 0305-1048. https://doi.org/10.1093/nar/gkz1054
O’brien, E.J., Lerman, J.A., Chang, R.L., Hyduke, D.R., Palsson, B.: Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol. 9(1), 693 (2013)
Orth, J.D., Thiele, I., Palsson, B.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010)
Orth, J.D., et al.: A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol. Syst. Biol. 7(1), 535 (2011)
Pedreira, T., Elfmann, C ., Stülke, J.: The current state of SubtiWiki, the database for the model organism Bacillus subtilis. Nucleic Acids Res. 50(D1), D875–D882 (2021). ISSN 0305-1048. https://doi.org/10.1093/nar/gkab943
Senger, R.S.: Biofuel production improvement with genome-scale models: the role of cell composition. Biotechnol. J. 5(7), 671–685 (2010)
Shaw, R., Cheung, C.Y.M.: Integration of crop growth model and constraint-based metabolic model predicts metabolic changes over rice plant development under water-limited stress. in Silico Plants 3(2), diab020 (2021). ISSN 2517-5025. https://doi.org/10.1093/insilicoplants/diab020
Silva, M.: Introducing Petri Nets. Practice of Petri Nets in Manufacturing, pp. 1–62, Chapman & Hall, London (1993)
Tanaka, K., Natsume, A., Ishikawa, S., Takenaka, S., Yoshida, K.: A new-generation of bacillus subtilis cell factory for further elevated scyllo-inositol production. Microb. Cell Fact. 16, 1–8 (2017)
Wittig, U., Rey, M., Weidemann, A., Kania, R., Müller, W.: SABIO-RK: an updated resource for manually curated biochemical reaction kinetics. Nucleic Acids Res. 46(D1), D656–D660 (2017). ISSN 0305-1048. https://doi.org/10.1093/nar/gkx1065
Zorrilla, F., Buric, F., Patil, K.R., Zelezniak, A.: metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res. 49(21), e126–e126 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lázaro, J., Júlvez, J., Zanghellini, J. (2024). Flexible Nets to Improve GEM Cell Factories by Combining Kinetic and Proteomics Data. In: Gori, R., Milazzo, P., Tribastone, M. (eds) Computational Methods in Systems Biology. CMSB 2024. Lecture Notes in Computer Science(), vol 14971. Springer, Cham. https://doi.org/10.1007/978-3-031-71671-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-71671-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71670-6
Online ISBN: 978-3-031-71671-3
eBook Packages: Computer ScienceComputer Science (R0)