Skip to main content

Uncovering Dynamic Structures Within Cyclic Attractors of Asynchronous Boolean Networks with Spectral Clustering

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2024)

Abstract

Boolean models provide an intuitive framework for the investigation of complex biological networks. Dynamics that implement asynchronous update rules, in particular, can help embody the complexity arising from non-deterministic behavior. These transition systems allow for the emergence of complex attractors, cyclic subgraphs that capture oscillating asymptotic behavior. Techniques that explore and attempt to describe the structures of these attractors have received limited attention. In this context, the incorporation of process rate information may yield additional insights into dynamical patterns. Here, we propose to use a spectral clustering algorithm on the kinetic rate matrix of time-continuous Boolean networks to uncover dynamic structures within cyclic attractors. The Robust Perron Cluster Analysis (PCCA+) can be used to unravel metastable sets in Markov jump processes, i.e. sets in which a system remains for a long time before it switches to another metastable set. As a proof-of-concept, we apply this method to Boolean models of the mammalian cell cycle. By considering the categorization of transitions as either slow or fast, we investigate the impact of time information on the emergence of significant sub-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Data Availability Statement

All data and figures presented in this paper can be reproduced with the Python code provided at Zenodo (10.5281/zenodo.12608344).

Notes

  1. 1.

    The authors in [16] considered networks with up to 23 nodes. The maximum array size in Matlab is \(2^{48}-1\approx 2.8\cdot 10^{14}\). However, the array must fit into memory.

References

  1. Albert, R., Robeva, R.: Chapter 4 – Signaling networks: asynchronous Boolean models. In: Robeva, R.S. (ed.) Algebraic and Discrete Mathematical Methods for Modern Biology, pp. 65–91. Academic Press, Boston (2015). https://doi.org/10.1016/B978-0-12-801213-0.00004-6

  2. Beneš, N., Brim, L., Huvar, O., Pastva, S., Šafránek, D., Šmijáková, E.: AEON.py: python library for attractor analysis in asynchronous Boolean networks. Bioinformatics 38(21), 4978–4980 (2022). https://doi.org/10.1093/bioinformatics/btac624

  3. Cooper, G.M.: The Cell: A molecular approach, 2nd edn. Sinauer Associates, Sunderland (2000)

    Google Scholar 

  4. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2), e1672 (2008). https://doi.org/10.1371/journal.pone.0001672

    Article  Google Scholar 

  5. Deritei, D., Rozum, J., Ravasz Regan, E., Albert, R.: A feedback loop of conditionally stable circuits drives the cell cycle from checkpoint to checkpoint. Sci. Rep. 9(1), 16430 (2019). https://doi.org/10.1038/s41598-019-52725-1

    Article  Google Scholar 

  6. Deuflhard, P., Weber, M.: Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398, 161–184 (2005). https://doi.org/10.1016/j.laa.2004.10.026

    Article  MathSciNet  Google Scholar 

  7. Diop, O., Tourniel, L., Fromion, V.: Summarizing complex asynchronous Boolean attractors, application to the analysis of a mammalian cell cycle model. In: 2019 18th European Control Conference (ECC), pp. 1677–1682. IEEE (2019). https://doi.org/10.23919/ECC.2019.8795712

  8. Estivill-Castro, V.: Why so many clustering algorithms: a position paper. SIGKDD Explor. 4(1), 65–75 (2002). https://doi.org/10.1145/568574.568575

    Article  MathSciNet  Google Scholar 

  9. Fackeldey, K., Sikorski, A., Weber, M.: Spectral clustering for non-reversible Markov chains. Comput. Appl. Math. 37(5), 6376–6391 (2018). https://doi.org/10.1007/s40314-018-0697-0

    Article  MathSciNet  Google Scholar 

  10. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), e124–e131 (2006). https://doi.org/10.1093/bioinformatics/btl210

    Article  Google Scholar 

  11. Frank, A.S., Sikorski, A., Röblitz, S.: Spectral clustering of Markov chain transition matrices with complex eigenvalues. J. Comput. Appl. Math. 444, 115791 (2024). https://doi.org/10.1016/j.cam.2024.115791

    Article  MathSciNet  Google Scholar 

  12. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977). https://doi.org/10.1021/j100540a008

    Article  Google Scholar 

  13. Husic, B.E., Pande, V.S.: Markov state models: from an art to a science. J. Am. Chem. Soc. 140(7), 2386–2396 (2018). https://doi.org/10.1021/jacs.7b12191

    Article  Google Scholar 

  14. Irons, D.J.: Logical analysis of the budding yeast cell cycle. J. Theor. Biol. 257(4), 543–559 (2009). https://doi.org/10.1016/j.jtbi.2008.12.028

    Article  MathSciNet  Google Scholar 

  15. Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 224(5215), 177–178 (1969). https://doi.org/10.1038/224177a0

    Article  Google Scholar 

  16. Koltai, M., Noel, V., Zinovyev, A., Calzone, L., Barillot, E.: Exact solving and sensitivity analysis of stochastic continuous time Boolean models. BMC Bioinform. 21, 1–22 (2020). https://doi.org/10.1186/s12859-020-03548-9

    Article  Google Scholar 

  17. Meyer, C.D.: Sensitivity of the stationary distribution of a Markov chain. SIAM J. Matrix Anal. Appl. 15(3), 715–728 (1994). https://doi.org/10.1137/S0895479892228900

    Article  MathSciNet  Google Scholar 

  18. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003). https://doi.org/10.1137/S00361445024180

    Article  MathSciNet  Google Scholar 

  19. Müssel, C., Hopfensitz, M., Kestler, H.A.: BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10), 1378–1380 (2010). https://doi.org/10.1093/bioinformatics/btq124

    Article  Google Scholar 

  20. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004). https://doi.org/10.1103/PhysRevE.69.026113

    Article  Google Scholar 

  21. Novák, B., Tyson, J.J.: A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230(4), 563–579 (2004). https://doi.org/10.1016/j.jtbi.2004.04.039

    Article  MathSciNet  Google Scholar 

  22. Privault, N.: Understanding Markov Chains: Examples and Applications. SUMS, 2nd edn, p. 358. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-0659-4

  23. Röblitz, S., Weber, M.: Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification. Adv. Data Anal. Classif. 7, 147–179 (2013). https://doi.org/10.1007/s11634-013-0134-6

    Article  MathSciNet  Google Scholar 

  24. Stoll, G., et al.: MaBoSS 2.0: an environment for stochastic Boolean modeling. Bioinformatics 33(14), 2226–2228 (2017). https://doi.org/10.1093/bioinformatics/btx123

  25. Stoll, G., Viara, E., Barillot, E., Calzone, L.: Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst. Biol. 6(1), 1–18 (2012). https://doi.org/10.1186/1752-0509-6-116

    Article  Google Scholar 

  26. Thakar, J.: Pillars of biology: Boolean modeling of gene-regulatory networks. J. Theor. Biol. 578, 111682 (2023). https://doi.org/10.1016/j.jtbi.2023.111682

    Article  Google Scholar 

  27. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153(1), 1–23 (1991). https://doi.org/10.1016/S0022-5193(05)80350-9

    Article  Google Scholar 

  28. Trinh, V.G., Hiraishi, K., Benhamou, B.: Computing attractors of large-scale asynchronous Boolean networks using minimal trap spaces. In: BCB 2022: Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 1–10 (2022). https://doi.org/10.1145/3535508.3545520

  29. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  30. Weber, M., Rungsarityotin, W., Schliep, A.: Perron cluster analysis and its connection to graph partitioning for noisy data. Technical Report 04-39, ZIB (2004). https://webdoc.sub.gwdg.de/ebook/serien/ah/reports/zib/zib2004/paperweb/reports/ZR-04-39.pdf. Accessed 24 June 2024

  31. Wei, J., Kuo, J.C.: Lumping analysis in monomolecular reaction systems. Analysis of the exactly lumpable system. Ind. Eng. Chem. Fundam. 8(1), 114–123 (1969). https://doi.org/10.1021/i160029a019

Download references

Acknowledgements

ET was funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy - The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID 390685689). The work of MY and SR was funded by the Norwegian Research Council (NFR), project “Markov State Models for Cellular Phenotype Switching” (grant no. 324080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Yousefian .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

A Appendix

A Appendix

1.1 A.1 Clustering Result for the Toy Model

Figure 6 shows the assignment of the eight states to the two clusters for different values of \(\varepsilon \). As \(\varepsilon \) increases, the two clusters become less separated.

Fig. 6.
figure 6

Toy model. Membership values for 2 clusters, for different values of \(\varepsilon \).

1.2 A.2 Clustering for Model A and B with Equiprobable Density

Using the equiprobable density \(w=(1,\dots ,1)\) instead of the stationary density for normalizing the eigenvectors, the crispness indicates a possible partitioning into two clusters for both Model A and Model B (Fig. 7. However, this clustering has a low modularity (Fig. 8). In fact, for a fast/slow ratio of 1000, this clustering simply assigns the two states 0010000 and 0010010 into a separate cluster. This clustering, however, is not robust because of the lack of a spectral gap after the second eigenvalue.

Fig. 7.
figure 7

Crispness of the optimal membership vectors for different cluster numbers using the equiprobable density for the normalization of eigenvectors.

Fig. 8.
figure 8

Modularity of the clusters obtained by cPCCA+ using the equiprobable density for the normalization of eigenvectors.

1.3 A.3 Markov State Model for Model B

The coarse-grained transition probability matrix for the model by Diop et al. [7] reads:

$$ T_c(0.001)=\begin{pmatrix} 0.9980 & 0.0010 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0010 & 0.0000 & 0.0000\\ 0.0000 & 0.9990 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0010 & 0.0000 & 0.0000\\ 0.0000 & 0.0000 & 0.9980 & 0.0000 & 0.0000 & 0.0005 & 0.0005 & 0.0000 & 0.0010\\ 0.0000 & 0.0000 & 0.0000 & 0.9980 & 0.0010 & 0.0010 & 0.0000 & 0.0000 & 0.0000\\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.9990 & 0.0010 & 0.0000 & 0.0000 & 0.0000\\ 0.0000 & 0.0000 & 0.0010 & 0.0000 & 0.0000 & 0.9980 & 0.0000 & 0.0010 & 0.0000\\ 0.0000 & 0.0000 & 0.0000 & 0.0010 & 0.0000 & 0.0000 & 0.9990 & 0.0000 & 0.0000\\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.9990 & 0.0010 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0005 & 0.0005 & 0.9990 \end{pmatrix} $$

1.4 A.4 Other Measures of Modularity

In addition to crispness which, in the context of fuzzy clustering, measures the degree to which nodes in a network are assigned exclusively to a single cluster [23], we test the goodness of the partitions identified by assigning each node to a single cluster (the one with the highest probability). In Fig. 9 we show the modularity of the identified partitions. This is a measure of the fraction of edges found inside clusters, minus the fraction of edges to be expected if these were distributed at random. It is a popular measure of strength for static network clustering [20]. The values we find confirm that the partition identified when setting the number of clusters to 9 is the best solution in both models. A fast/slow ratio of 100 is sufficient to obtain the highest of the calculated modularity values.

Fig. 9.
figure 9

Modularity for the clusters obtained via cPCCA+ for the cyclic attractor of [7] (Model B) and of [10] (Model A).

1.5 A.5 Clustering of States in Model A

Figure 10a illustrates how the spectral gap after the first nine eigenvalues increases with increasing fast/slow ratio. Accordingly, crispness peaks at nine clusters (Fig. 10b). The assignment of states to these nine clusters is contained in Table 2, and transition states are listed in Table 3.

Fig. 10.
figure 10

Model A. (a) The logarithm of the absolute value of the eigenvalues and (b) the cluster numbers suggested by cPCCA+ for different fast/slow ratios. Note that the first eigenvalue is zero, so it is not plotted here because its logarithm is not defined. For increasing fast/slow ratio, the spectral gap after 9 eigenvalues becomes larger; hence, the corresponding eigenspace is better conditioned.

Table 2. Model A. Assignment of states to clusters (threshold 0.7). Bold states are clustered equally in Model B. Transition states are not listed.
Table 3. Model A. Transition states (threshold 0.7) and the clusters to which they partially belong.

1.6 A.6 Differences in the Clustering Between Model A and B

The following differences can be observed between the clusters in the two models:

  • state 1100001 from cluster 5 and state 1100010 from cluster 7 in Model B are not contained in the attractor of Model A;

  • state 1100000 from cluster 5 in Model B becomes a transition state between clusters 5 and 6 in Model A;

  • state 1100011 is assigned to cluster 7 in Model B, and to cluster 6 in Model A;

  • state 0100011 from cluster 7 in Model B becomes a transition state between clusters 6 and 7 in Model A;

  • the four transition states 1110000 (5,6), 1110001 (5,6), 1110010 (6,7), and 1110011 (6,5) from Model B are reassigned to cluster 6 in Model A;

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yousefian, M., Tonello, E., Frank, AS., Siebert, H., Röblitz, S. (2024). Uncovering Dynamic Structures Within Cyclic Attractors of Asynchronous Boolean Networks with Spectral Clustering. In: Gori, R., Milazzo, P., Tribastone, M. (eds) Computational Methods in Systems Biology. CMSB 2024. Lecture Notes in Computer Science(), vol 14971. Springer, Cham. https://doi.org/10.1007/978-3-031-71671-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71671-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71670-6

  • Online ISBN: 978-3-031-71671-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics