Abstract
Partially Specified Boolean Networks (PSBNs) represent a family of Boolean models resulting from possible interpretations of unknown update logics. Hybrid extension of CTL (HCTL) has the power to express complex dynamical phenomena, such as oscillations or stability. We present BNClassifier to classify Boolean Networks corresponding to a given PSBN according to criteria specified in HCTL. The implementation of the tool is fully symbolic (based on BDDs). The results are visualised using the machine-learning-based technology of decision trees.
The work has been supported by the Czech Science Foundation grant No. GA22-10845S. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 101034413.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Tauri apps. https://tauri.app/. Accessed 30 Sept 2023
Arellano, G., et al.: “Antelope”: a hybrid-logic model checker for branching-time boolean GRN analysis. BMC Bioinform. 12(1), 490 (2011)
Beneš, N., Brim, L., Kadlecaj, J., Pastva, S., Šafránek, D.: AEON: attractor bifurcation analysis of parametrised boolean networks. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 569–581. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_28
Beneš, N., Brim, L., Pastva, S., Šafránek, D.: Aeon 2021: bifurcation decision trees in boolean networks. In: Cinquemani, E., Paulevé, L. (eds.) CMSB 2021. LNCS, vol. 12881, pp. 230–237. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85633-5_14
Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: A model checking approach to discrete bifurcation analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 85–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_6
Beneš, N., Brim, L., Pastva, S., Poláček, J., Šafránek, D.: Formal analysis of qualitative long-term behaviour in parametrised boolean networks. In: Ait-Ameur, Y., Qin, S. (eds.) ICFEM 2019. LNCS, vol. 11852, pp. 353–369. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32409-4_22
Beneš, N., Brim, L., Huvar, O., Pastva, S., Šafránek, D.: Boolean network sketches: a unifying framework for logical model inference. Bioinformatics 39(4), btad158 (2023). https://doi.org/10.1093/bioinformatics/btad158
Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy for symbolic state—space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_23
Goranko, V.: Temporal logic with reference pointers. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 133–148. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0013985
Goranko, V.: Temporal logics with reference pointers and computation tree logics. J. Appl. Non-Classical Logics 10(3–4), 221–242 (2000)
Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLOS Comput. Biol. 9(10), 1–15 (2013). https://doi.org/10.1371/journal.pcbi.1003286
Kernberger, D., Lange, M.: Model checking for hybrid branching-time logics. J. Logical Algebraic Methods Program. 110, 100427 (2020)
Klarner, H., Streck, A., Šafránek, D., Kolčák, J., Siebert, H.: Parameter identification and model ranking of thomas networks. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, pp. 207–226. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33636-2_13
Kluyver, T., et al.: Jupyter notebooks–a publishing format for reproducible computational workflows. In: Positioning and Power in Academic Publishing: Players, Agents and Agendas, vol. 2016, pp. 87–90. IOS Press (2016)
Naldi, A., et al.: The colomoto interactive notebook: accessible and reproducible computational analyses for qualitative biological networks. Front. Physiol. 9 (2018). https://doi.org/10.3389/fphys.2018.00680
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
Schwab, J.D., Kühlwein, S.D., Ikonomi, N., Kühl, M., Kestler, H.A.: Concepts in Boolean network modeling: what do they all mean? Comput. Struct. Biotechnol. J. 18, 571–582 (2020). https://doi.org/10.1016/j.csbj.2020.03.001
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Beneš, N., Brim, L., Huvar, O., Pastva, S., Šafránek, D. (2024). BNClassifier: Classifying Boolean Models by Dynamic Properties. In: Gori, R., Milazzo, P., Tribastone, M. (eds) Computational Methods in Systems Biology. CMSB 2024. Lecture Notes in Computer Science(), vol 14971. Springer, Cham. https://doi.org/10.1007/978-3-031-71671-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-71671-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71670-6
Online ISBN: 978-3-031-71671-3
eBook Packages: Computer ScienceComputer Science (R0)