Skip to main content

BNClassifier: Classifying Boolean Models by Dynamic Properties

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14971))

Included in the following conference series:

Abstract

Partially Specified Boolean Networks (PSBNs) represent a family of Boolean models resulting from possible interpretations of unknown update logics. Hybrid extension of CTL (HCTL) has the power to express complex dynamical phenomena, such as oscillations or stability. We present BNClassifier to classify Boolean Networks corresponding to a given PSBN according to criteria specified in HCTL. The implementation of the tool is fully symbolic (based on BDDs). The results are visualised using the machine-learning-based technology of decision trees.

The work has been supported by the Czech Science Foundation grant No. GA22-10845S. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 101034413.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://crates.io/crates/biodivine-hctl-model-checker.

References

  1. Tauri apps. https://tauri.app/. Accessed 30 Sept 2023

  2. Arellano, G., et al.: “Antelope”: a hybrid-logic model checker for branching-time boolean GRN analysis. BMC Bioinform. 12(1), 490 (2011)

    Google Scholar 

  3. Beneš, N., Brim, L., Kadlecaj, J., Pastva, S., Šafránek, D.: AEON: attractor bifurcation analysis of parametrised boolean networks. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 569–581. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_28

    Chapter  Google Scholar 

  4. Beneš, N., Brim, L., Pastva, S., Šafránek, D.: Aeon 2021: bifurcation decision trees in boolean networks. In: Cinquemani, E., Paulevé, L. (eds.) CMSB 2021. LNCS, vol. 12881, pp. 230–237. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85633-5_14

    Chapter  Google Scholar 

  5. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: A model checking approach to discrete bifurcation analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 85–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_6

    Chapter  Google Scholar 

  6. Beneš, N., Brim, L., Pastva, S., Poláček, J., Šafránek, D.: Formal analysis of qualitative long-term behaviour in parametrised boolean networks. In: Ait-Ameur, Y., Qin, S. (eds.) ICFEM 2019. LNCS, vol. 11852, pp. 353–369. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32409-4_22

    Chapter  Google Scholar 

  7. Beneš, N., Brim, L., Huvar, O., Pastva, S., Šafránek, D.: Boolean network sketches: a unifying framework for logical model inference. Bioinformatics 39(4), btad158 (2023). https://doi.org/10.1093/bioinformatics/btad158

  8. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy for symbolic state—space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_23

    Chapter  Google Scholar 

  9. Goranko, V.: Temporal logic with reference pointers. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 133–148. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0013985

    Chapter  Google Scholar 

  10. Goranko, V.: Temporal logics with reference pointers and computation tree logics. J. Appl. Non-Classical Logics 10(3–4), 221–242 (2000)

    Article  MathSciNet  Google Scholar 

  11. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLOS Comput. Biol. 9(10), 1–15 (2013). https://doi.org/10.1371/journal.pcbi.1003286

    Article  Google Scholar 

  12. Kernberger, D., Lange, M.: Model checking for hybrid branching-time logics. J. Logical Algebraic Methods Program. 110, 100427 (2020)

    Article  MathSciNet  Google Scholar 

  13. Klarner, H., Streck, A., Šafránek, D., Kolčák, J., Siebert, H.: Parameter identification and model ranking of thomas networks. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, pp. 207–226. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33636-2_13

    Chapter  Google Scholar 

  14. Kluyver, T., et al.: Jupyter notebooks–a publishing format for reproducible computational workflows. In: Positioning and Power in Academic Publishing: Players, Agents and Agendas, vol. 2016, pp. 87–90. IOS Press (2016)

    Google Scholar 

  15. Naldi, A., et al.: The colomoto interactive notebook: accessible and reproducible computational analyses for qualitative biological networks. Front. Physiol. 9 (2018). https://doi.org/10.3389/fphys.2018.00680

  16. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Article  Google Scholar 

  17. Schwab, J.D., Kühlwein, S.D., Ikonomi, N., Kühl, M., Kestler, H.A.: Concepts in Boolean network modeling: what do they all mean? Comput. Struct. Biotechnol. J. 18, 571–582 (2020). https://doi.org/10.1016/j.csbj.2020.03.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Šafránek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beneš, N., Brim, L., Huvar, O., Pastva, S., Šafránek, D. (2024). BNClassifier: Classifying Boolean Models by Dynamic Properties. In: Gori, R., Milazzo, P., Tribastone, M. (eds) Computational Methods in Systems Biology. CMSB 2024. Lecture Notes in Computer Science(), vol 14971. Springer, Cham. https://doi.org/10.1007/978-3-031-71671-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71671-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71670-6

  • Online ISBN: 978-3-031-71671-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics