Skip to main content

Genetic Algorithm and VR for Assessing the Level of Expertise of Maintenance Operator

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2024)

Abstract

The study aims to find the features for assessing the level of a maintenance operator. A genetic algorithm is used to identify the most relevant features and reduce their size. Based on 30 different features entered, we demonstrate that only three operator-level evaluation features provide a good classification. Virtual reality was used to simulate maintenance operations, collect data, and validate our method for identifying the most relevant features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kernels and Feature maps: Theory and intuition—Data Blog. https://xavierbourretsicotte.github.io/Kernel_feature_map.html

  2. Bellu, S.L., Lahlou, S., Nosulenko, V., Samoylenko, E.: Studying activity in manual work: a framework for analysis and training. Le travail humain 79(1), 7–30 (2016)

    Article  Google Scholar 

  3. Cahapin, E.L., Malabag, B.A., Jr, C.S.S., Reyes, J.L., Legaspi, G.S., Adrales, K.L.: Clustering of students admission data using k-means, hierarchical, and DBSCAN algorithms. Bull. Electr. Eng. Inf. 12(6), 3647–3656 (2023). https://doi.org/10.11591/eei.v12i6.4849

  4. Dam, E.B., Koch, M., Lillholm, M.: Quaternions, Interpolation and Animation (1998)

    Google Scholar 

  5. Hammond, T., et al.: It’s not just about accuracy: metrics that matter when modeling expert sketching ability. ACM Trans. Interact. Intell. Syst. 8(3), 19:1–19:47 (2018). https://doi.org/10.1145/3181673

  6. Hastie, T., Friedman, J., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

  7. Kiang, C.T., Yoong, C.K., Spowage, A.C.: Local sensor system for badminton smash analysis. In: 2009 IEEE Instrumentation and Measurement Technology Conference, pp. 883–888 (2009). https://doi.org/10.1109/IMTC.2009.5168575

  8. Kumar, V.: Feature selection: a literature review. Smart Comput. Rev. 4(3) (2014). https://doi.org/10.6029/smartcr.2014.03.007

  9. Ladha, C., Hammerla, N., Olivier, P., Ploetz, T.: ClimbAX: skill assessment for climbing enthusiasts (2013). https://doi.org/10.1145/2493432.2493492

  10. Nordin, N., Xie, S.Q., Wünsche, B.: Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review. J. Neuroeng. Rehabil. 11(1), 137 (2014). https://doi.org/10.1186/1743-0003-11-137

    Article  Google Scholar 

  11. Venkatesh, B., Anuradha, J.: A review of feature selection and its methods. Cybern. Inf. Technol. 19(1), 3–26 (2019). https://doi.org/10.2478/cait-2019-0001

    Article  MathSciNet  Google Scholar 

  12. Zollo, L., Rossini, L., Bravi, M., Magrone, G., Sterzi, S., Guglielmelli, E.: Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation. Med. Biol. Eng. Comput. 49(10), 1131–1144 (2011). https://doi.org/10.1007/s11517-011-0808-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by French government funding managed by the National Research Agency in the framework of the project VIMACO - ANR-21-CE10-0009. This work was supported by French government funding managed by the National Research Agency under the Investments for the Future program (PIA) grant ANR-21- ESRE-0030 (CONTINUUM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Foltyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foltyn, A., Guillet, C., Danglade, F., Merienne, F. (2024). Genetic Algorithm and VR for Assessing the Level of Expertise of Maintenance Operator. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2024. Lecture Notes in Computer Science, vol 15027. Springer, Cham. https://doi.org/10.1007/978-3-031-71707-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71707-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71706-2

  • Online ISBN: 978-3-031-71707-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics