Skip to main content

X-SITE CAVE: Evolution of High-Resolution Immersive Display Towards a Cost-Efficient and Open-Source Design

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2024)

Abstract

The X-SITE CAVE at Freiberg University is an immersive VR platform for interactive scientific visualization. Main features include its tiled-display design yielding a very high visual resolution and its small spatial footprint. Since its initial setup in 2008, the system has been under continuous development and modernization. An important aspect is the evolution from a rather expensive and partially proprietary platform to a cost-efficient and open-source driven system. High- and medium cost components like commercial calibration software and the initial set of projectors were gradually replaced by open-source software, in-house developments and off-the-shelf hardware. An overview of the history and the massive changes over time is provided with special focus on more recent developments including hardware upgrades, calibration improvements and integration of modern rendering software. A novelty, to the best of our knowledge, is the integration of the open-source game engine Godot into a CAVE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/bnlrnz/xsite_ue.

References

  1. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’93, pp. 135–142. ACM, New York, NY, USA (1993). https://doi.org/10.1145/166117.166134

  2. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992). https://doi.org/10.1145/129888.129892

    Article  Google Scholar 

  3. Davis, C., et al.: CAVE-VR and unity game engine for visualizing city scale 3D meshes. In: 2022 IEEE 19th Annual Consumer Communications and Networking Conference (CCNC), pp. 733–734 (2022). https://doi.org/10.1109/CCNC49033.2022.9700515

  4. DeFanti, T., et al.: The future of the CAVE. Open Eng. 1(1), 16–37 (2011). https://doi.org/10.2478/s13531-010-0002-5

    Article  Google Scholar 

  5. DeFanti, T.A., et al.: The StarCAVE, a third-generation CAVE and virtual reality OptIPortal. Futur. Gener. Comput. Syst. 25(2), 169–178 (2009). https://doi.org/10.1016/j.future.2008.07.015

    Article  Google Scholar 

  6. Dolby Laboratories Inc.: 7.1 Virtual Speaker Setup (2024). https://www.dolby.com/about/support/guide/speaker-setup-guides/7.1-virtual-speakers-setup-guide

  7. Eger Passos, D., Heinrich, N., Jung, B.: A robot-in-a-CAVE setup for assessing the tracking accuracy of AR/VR devices. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2021. CCIS, vol. 1420, pp. 249–255. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78642-7_33

    Chapter  Google Scholar 

  8. Enghofer, F., Hládek, L., Seeber, B.U.: An ‘Unreal’ framework for creating and controlling audio-visual scenes for the rtSOFE. In: Fortschritte der Akustik - DAGA ’21, pp. 1217–1220 (2021)

    Google Scholar 

  9. Epic Games Inc.: N Display Overview For Unreal Engine | Unreal Engine 5.3 Documentation (2024). https://dev.epicgames.com/documentation/en-us/unreal-engine/ndisplay-overview-for-unreal-engine

  10. Febretti, A., et al.: CAVE2: a hybrid reality environment for immersive simulation and information analysis. In: Dolinsky, M., McDowall, I.E. (eds.) IS &T/SPIE Electronic Imaging, p. 864903. Burlingame, California, USA (2013). https://doi.org/10.1117/12.2005484

  11. Gonçalves, A., Bermúdez, S.: KAVE: building kinect based CAVE automatic virtual environments, methods for surround-screen projection management, motion parallax and full-body interaction support. Proc. ACM Hum.-Comput. Interact. 2(EICS), 10:1–10:15 (2018). https://doi.org/10.1145/3229092

  12. Grehl, S., et al.: Towards virtualization of underground mines using mobile robots – from 3D scans to virtual mines. In: 23rd International Symposium on Mine Planning and Equipment Selection (2015)

    Google Scholar 

  13. Hereld, M., Judson, I., Stevens, R., National, A.: DottyToto: a measurement engine for aligning multi-projector display systems. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 5002 (2003). https://doi.org/10.1117/12.473845

  14. Jacobson, J., Le Renard, M., Lugrin, J.L., Cavazza, M.: The CaveUT system: immersive entertainment based on a game engine. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology. ACE ’05, pp. 184–187. Association for Computing Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1178477.1178503

  15. Jaynes, C., Seales, W.B., Calvert, K., Fei, Z., Griffioen, J.: The metaverse: a networked collection of inexpensive, self-configuring, immersive environments. In: Proceedings of the Workshop on Virtual Environments 2003. EGVE ’03, pp. 115–124. Association for Computing Machinery, New York, NY, USA (2003). https://doi.org/10.1145/769953.769967

  16. Jung, B., Lenk, M., Vitzthum, A.: Model-driven multi-platform development of 3D applications with round-trip engineering. In: Software Engineering 2013, pp. 287–300. Gesellschaft für Informatik e.V. (2013)

    Google Scholar 

  17. Knabb, K.A., Schulze, J.P., Kuester, F., DeFanti, T.A., Levy, T.E.: Scientific visualization, 3D immersive virtual reality environments, and archaeology in Jordan and the near east. Near Eastern Archaeol. 77(3), 228–232 (2014). https://doi.org/10.5615/neareastarch.77.3.0228

    Article  Google Scholar 

  18. Kooima, R.: Generalized perspective projection. In: J. Sch. Electron. Eng. Comput. Sci. 6(1) (2009)

    Google Scholar 

  19. Kuchera-Morin, J., et al.: Immersive full-surround multi-user system design. Comput. Graph. 40, 10–21 (2014). https://doi.org/10.1016/j.cag.2013.12.004

    Article  Google Scholar 

  20. Lebiedz, J., Mazikowski, A.: Multiuser stereoscopic projection techniques for CAVE-type virtual reality systems. IEEE Trans. Hum.-Mach. Syst. 51(5), 535–543 (2021). https://doi.org/10.1109/THMS.2021.3102520

    Article  Google Scholar 

  21. Lehmann, H., Jung, B.: Virtual prototyping of metal melt filters: a HPC-based workflow for query-driven visualization. In: Aneziris, C.G., Biermann, H. (eds.) Multifunctional Ceramic Filter Systems for Metal Melt Filtration: Towards Zero-Defect Materials. Springer Series in Materials Science, vol. 337, pp. 453–487. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-40930-1_18

    Chapter  Google Scholar 

  22. Lugrin, J.L., Charles, F., Cavazza, M., Le Renard, M., Freeman, J., Lessiter, J.: CaveUDK: a VR game engine middleware. In: Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology. VRST ’12, pp. 137–144. Association for Computing Machinery, New York, NY, USA (2012).https://doi.org/10.1145/2407336.2407363

  23. Majumder, A.: A practical framework to achieve perceptually seamless multi-projector displays. Ph.D. thesis, The University of North Carolina at Chapel Hill (2003)

    Google Scholar 

  24. Majumder, A.: Ubiquitous displays: a distributed network of active displays. In: Bhanu, B., Ravishankar, C.V., Roy-Chowdhury, A.K., Aghajan, H., Terzopoulos, D. (eds.) Distributed Video Sensor Networks, pp. 215–230. Springer, London (2011). https://doi.org/10.1007/978-0-85729-127-1_15

  25. Majumder, A., Brown, M.S.: Practical Multi-projector Display Design. A K Peters (2007)

    Google Scholar 

  26. Majumder, A., Stevens, R.: Perceptual photometric seamlessness in projection-based tiled displays. ACM Trans. Graph. 24(1), 118–139 (2005). https://doi.org/10.1145/1037957.1037964

    Article  Google Scholar 

  27. Mattová, M., Sobota, B., \(\check{\rm D}\)uratný, M., Korečko, S.: Cluster application in a virtual CAVE computing environment. In: 2022 20th International Conference on Emerging eLearning Technologies and Applications (ICETA), pp. 416–421 (2022). https://doi.org/10.1109/ICETA57911.2022.9974661

  28. Neto, M.P., Dias, D.R.C., Trevelin, L.C., de Paiva Guimarães, M., Brega, J.R.F.: Unity cluster package – dragging and dropping components for multi-projection virtual reality applications based on PC clusters. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9159, pp. 261–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21413-9_19

    Chapter  Google Scholar 

  29. Pose, S., Reitmann, S., Licht, G.J., Grab, T., Fieback, T.: AI-prepared autonomous freshwater monitoring and sea ground detection by an autonomous surface vehicle. Remote Sens. 15(3), 860 (2023). https://doi.org/10.3390/rs15030860

    Article  Google Scholar 

  30. Raij, A., Pollefeys, M.: Auto-calibration of multi-projector display walls. In: Proceedings of the 17th International Conference on Pattern Recognition. ICPR 2004, vol. 1, pp. 14–17 (2004). https://doi.org/10.1109/ICPR.2004.1333994

  31. Raij, A., Gill, G., Majumder, A., Towles, H., Fuchs, H.: PixelFlex2: a comprehensive, automatic, casually-aligned multi-projector display. In: Proceedings of IEEE International Workshop on Projector-Camera Systems (2003)

    Google Scholar 

  32. Taylor II, R.M.: Virtual Reality Peripheral Network - Official GitHub Repository (2024). https://github.com/vrpn/vrpn/wiki/Home

  33. RWTH Aachen: AixCAVE at RWTH Aachen University - RWTH AACHEN UNIVERSITY IT Center - English (2023). https://www.itc.rwth-aachen.de/cms/it-center/forschung-projekte/forschungsschwerpunkte/virtuelle-realitaet/~fgqa/aixcave/?lidx=1

  34. Sajadi, B., Majumder, A.: Autocalibrating tiled projectors on piecewise smooth vertically extruded surfaces. IEEE Trans. Vis. Comput. Graph. 17(9), 1209–1222 (2011). https://doi.org/10.1109/TVCG.2011.33

    Article  Google Scholar 

  35. Sajadi, B., Majumder, A.: Autocalibration of multiprojector CAVE-like immersive environments. IEEE Trans. Vis. Comput. Graph. 18(3), 381–393 (2011). https://doi.org/10.1109/TVCG.2011.271

    Article  Google Scholar 

  36. Szabolcs Dombi: ModernGL Documentation (2024). https://moderngl.readthedocs.io/en/stable/

  37. Theodoropoulos, A., Stavropoulou, D., Papadopoulos, P., Platis, N., Lepouras, G.: Developing an interactive VR CAVE for immersive shared gaming experiences. Virtual Worlds 2(2), 162–181 (2023). https://doi.org/10.3390/virtualworlds2020010

    Article  Google Scholar 

  38. Tredinnick, R., Boettcher, B., Smith, S., Solovy, S., Ponto, K.: Uni-CAVE: a Unity3D plugin for non-head mounted VR display systems. In: 2017 IEEE Virtual Reality (VR), pp. 393–394 (2017). https://doi.org/10.1109/VR.2017.7892342

  39. University of Stuttgart: HLRS High Performance Computing Center Stuttgart: COVISE (2024). https://www.hlrs.de/solutions/types-of-computing/visualization/covise

  40. v. d. Schaaf. T., Germans, D.M., Koutek, M., Bal, H.E.: ICWall: a calibrated stereo tiled display from commodity components. In: Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications. VRCIA ’06, pp. 289–296. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1128923.1128972

  41. van Reimersdahl, T., Kuhlen, T., Gerndt, A., Henrichs, J., Bischof, C.: ViSTA: a multimodal, platform-independent VR-Toolkit based on WTK, VTK, and MPI. In: Fourth International Immersive Projection Technology Workshop (2000)

    Google Scholar 

  42. Vogt, D., Grehl, S., Berger, E., Ben Amor, H., Jung, B.: A data-driven method for real-time character animation in human-agent interaction. In: Bickmore, T., Marsella, S., Sidner, C. (eds.) IVA 2014. LNCS (LNAI), vol. 8637, pp. 463–476. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09767-1_57

    Chapter  Google Scholar 

Download references

Acknowledgment

We thank all our prior research assistants and students that helped improving the X-SITE CAVE. In particular we like to thank our colleague Christian Schubert for his long-term technical support, Henry Lehmann for his work on VTK and Paraview integration, Ben Lorenz for his Unreal Engine 4 integration and Gero Licht for the installation of projector remote controls.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Richter, F., Jung, B. (2024). X-SITE CAVE: Evolution of High-Resolution Immersive Display Towards a Cost-Efficient and Open-Source Design. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2024. Lecture Notes in Computer Science, vol 15027. Springer, Cham. https://doi.org/10.1007/978-3-031-71707-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71707-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71706-2

  • Online ISBN: 978-3-031-71707-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics