Abstract
The X-SITE CAVE at Freiberg University is an immersive VR platform for interactive scientific visualization. Main features include its tiled-display design yielding a very high visual resolution and its small spatial footprint. Since its initial setup in 2008, the system has been under continuous development and modernization. An important aspect is the evolution from a rather expensive and partially proprietary platform to a cost-efficient and open-source driven system. High- and medium cost components like commercial calibration software and the initial set of projectors were gradually replaced by open-source software, in-house developments and off-the-shelf hardware. An overview of the history and the massive changes over time is provided with special focus on more recent developments including hardware upgrades, calibration improvements and integration of modern rendering software. A novelty, to the best of our knowledge, is the integration of the open-source game engine Godot into a CAVE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’93, pp. 135–142. ACM, New York, NY, USA (1993). https://doi.org/10.1145/166117.166134
Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992). https://doi.org/10.1145/129888.129892
Davis, C., et al.: CAVE-VR and unity game engine for visualizing city scale 3D meshes. In: 2022 IEEE 19th Annual Consumer Communications and Networking Conference (CCNC), pp. 733–734 (2022). https://doi.org/10.1109/CCNC49033.2022.9700515
DeFanti, T., et al.: The future of the CAVE. Open Eng. 1(1), 16–37 (2011). https://doi.org/10.2478/s13531-010-0002-5
DeFanti, T.A., et al.: The StarCAVE, a third-generation CAVE and virtual reality OptIPortal. Futur. Gener. Comput. Syst. 25(2), 169–178 (2009). https://doi.org/10.1016/j.future.2008.07.015
Dolby Laboratories Inc.: 7.1 Virtual Speaker Setup (2024). https://www.dolby.com/about/support/guide/speaker-setup-guides/7.1-virtual-speakers-setup-guide
Eger Passos, D., Heinrich, N., Jung, B.: A robot-in-a-CAVE setup for assessing the tracking accuracy of AR/VR devices. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2021. CCIS, vol. 1420, pp. 249–255. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78642-7_33
Enghofer, F., Hládek, L., Seeber, B.U.: An ‘Unreal’ framework for creating and controlling audio-visual scenes for the rtSOFE. In: Fortschritte der Akustik - DAGA ’21, pp. 1217–1220 (2021)
Epic Games Inc.: N Display Overview For Unreal Engine | Unreal Engine 5.3 Documentation (2024). https://dev.epicgames.com/documentation/en-us/unreal-engine/ndisplay-overview-for-unreal-engine
Febretti, A., et al.: CAVE2: a hybrid reality environment for immersive simulation and information analysis. In: Dolinsky, M., McDowall, I.E. (eds.) IS &T/SPIE Electronic Imaging, p. 864903. Burlingame, California, USA (2013). https://doi.org/10.1117/12.2005484
Gonçalves, A., Bermúdez, S.: KAVE: building kinect based CAVE automatic virtual environments, methods for surround-screen projection management, motion parallax and full-body interaction support. Proc. ACM Hum.-Comput. Interact. 2(EICS), 10:1–10:15 (2018). https://doi.org/10.1145/3229092
Grehl, S., et al.: Towards virtualization of underground mines using mobile robots – from 3D scans to virtual mines. In: 23rd International Symposium on Mine Planning and Equipment Selection (2015)
Hereld, M., Judson, I., Stevens, R., National, A.: DottyToto: a measurement engine for aligning multi-projector display systems. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 5002 (2003). https://doi.org/10.1117/12.473845
Jacobson, J., Le Renard, M., Lugrin, J.L., Cavazza, M.: The CaveUT system: immersive entertainment based on a game engine. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology. ACE ’05, pp. 184–187. Association for Computing Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1178477.1178503
Jaynes, C., Seales, W.B., Calvert, K., Fei, Z., Griffioen, J.: The metaverse: a networked collection of inexpensive, self-configuring, immersive environments. In: Proceedings of the Workshop on Virtual Environments 2003. EGVE ’03, pp. 115–124. Association for Computing Machinery, New York, NY, USA (2003). https://doi.org/10.1145/769953.769967
Jung, B., Lenk, M., Vitzthum, A.: Model-driven multi-platform development of 3D applications with round-trip engineering. In: Software Engineering 2013, pp. 287–300. Gesellschaft für Informatik e.V. (2013)
Knabb, K.A., Schulze, J.P., Kuester, F., DeFanti, T.A., Levy, T.E.: Scientific visualization, 3D immersive virtual reality environments, and archaeology in Jordan and the near east. Near Eastern Archaeol. 77(3), 228–232 (2014). https://doi.org/10.5615/neareastarch.77.3.0228
Kooima, R.: Generalized perspective projection. In: J. Sch. Electron. Eng. Comput. Sci. 6(1) (2009)
Kuchera-Morin, J., et al.: Immersive full-surround multi-user system design. Comput. Graph. 40, 10–21 (2014). https://doi.org/10.1016/j.cag.2013.12.004
Lebiedz, J., Mazikowski, A.: Multiuser stereoscopic projection techniques for CAVE-type virtual reality systems. IEEE Trans. Hum.-Mach. Syst. 51(5), 535–543 (2021). https://doi.org/10.1109/THMS.2021.3102520
Lehmann, H., Jung, B.: Virtual prototyping of metal melt filters: a HPC-based workflow for query-driven visualization. In: Aneziris, C.G., Biermann, H. (eds.) Multifunctional Ceramic Filter Systems for Metal Melt Filtration: Towards Zero-Defect Materials. Springer Series in Materials Science, vol. 337, pp. 453–487. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-40930-1_18
Lugrin, J.L., Charles, F., Cavazza, M., Le Renard, M., Freeman, J., Lessiter, J.: CaveUDK: a VR game engine middleware. In: Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology. VRST ’12, pp. 137–144. Association for Computing Machinery, New York, NY, USA (2012).https://doi.org/10.1145/2407336.2407363
Majumder, A.: A practical framework to achieve perceptually seamless multi-projector displays. Ph.D. thesis, The University of North Carolina at Chapel Hill (2003)
Majumder, A.: Ubiquitous displays: a distributed network of active displays. In: Bhanu, B., Ravishankar, C.V., Roy-Chowdhury, A.K., Aghajan, H., Terzopoulos, D. (eds.) Distributed Video Sensor Networks, pp. 215–230. Springer, London (2011). https://doi.org/10.1007/978-0-85729-127-1_15
Majumder, A., Brown, M.S.: Practical Multi-projector Display Design. A K Peters (2007)
Majumder, A., Stevens, R.: Perceptual photometric seamlessness in projection-based tiled displays. ACM Trans. Graph. 24(1), 118–139 (2005). https://doi.org/10.1145/1037957.1037964
Mattová, M., Sobota, B., \(\check{\rm D}\)uratný, M., Korečko, S.: Cluster application in a virtual CAVE computing environment. In: 2022 20th International Conference on Emerging eLearning Technologies and Applications (ICETA), pp. 416–421 (2022). https://doi.org/10.1109/ICETA57911.2022.9974661
Neto, M.P., Dias, D.R.C., Trevelin, L.C., de Paiva Guimarães, M., Brega, J.R.F.: Unity cluster package – dragging and dropping components for multi-projection virtual reality applications based on PC clusters. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9159, pp. 261–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21413-9_19
Pose, S., Reitmann, S., Licht, G.J., Grab, T., Fieback, T.: AI-prepared autonomous freshwater monitoring and sea ground detection by an autonomous surface vehicle. Remote Sens. 15(3), 860 (2023). https://doi.org/10.3390/rs15030860
Raij, A., Pollefeys, M.: Auto-calibration of multi-projector display walls. In: Proceedings of the 17th International Conference on Pattern Recognition. ICPR 2004, vol. 1, pp. 14–17 (2004). https://doi.org/10.1109/ICPR.2004.1333994
Raij, A., Gill, G., Majumder, A., Towles, H., Fuchs, H.: PixelFlex2: a comprehensive, automatic, casually-aligned multi-projector display. In: Proceedings of IEEE International Workshop on Projector-Camera Systems (2003)
Taylor II, R.M.: Virtual Reality Peripheral Network - Official GitHub Repository (2024). https://github.com/vrpn/vrpn/wiki/Home
RWTH Aachen: AixCAVE at RWTH Aachen University - RWTH AACHEN UNIVERSITY IT Center - English (2023). https://www.itc.rwth-aachen.de/cms/it-center/forschung-projekte/forschungsschwerpunkte/virtuelle-realitaet/~fgqa/aixcave/?lidx=1
Sajadi, B., Majumder, A.: Autocalibrating tiled projectors on piecewise smooth vertically extruded surfaces. IEEE Trans. Vis. Comput. Graph. 17(9), 1209–1222 (2011). https://doi.org/10.1109/TVCG.2011.33
Sajadi, B., Majumder, A.: Autocalibration of multiprojector CAVE-like immersive environments. IEEE Trans. Vis. Comput. Graph. 18(3), 381–393 (2011). https://doi.org/10.1109/TVCG.2011.271
Szabolcs Dombi: ModernGL Documentation (2024). https://moderngl.readthedocs.io/en/stable/
Theodoropoulos, A., Stavropoulou, D., Papadopoulos, P., Platis, N., Lepouras, G.: Developing an interactive VR CAVE for immersive shared gaming experiences. Virtual Worlds 2(2), 162–181 (2023). https://doi.org/10.3390/virtualworlds2020010
Tredinnick, R., Boettcher, B., Smith, S., Solovy, S., Ponto, K.: Uni-CAVE: a Unity3D plugin for non-head mounted VR display systems. In: 2017 IEEE Virtual Reality (VR), pp. 393–394 (2017). https://doi.org/10.1109/VR.2017.7892342
University of Stuttgart: HLRS High Performance Computing Center Stuttgart: COVISE (2024). https://www.hlrs.de/solutions/types-of-computing/visualization/covise
v. d. Schaaf. T., Germans, D.M., Koutek, M., Bal, H.E.: ICWall: a calibrated stereo tiled display from commodity components. In: Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications. VRCIA ’06, pp. 289–296. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1128923.1128972
van Reimersdahl, T., Kuhlen, T., Gerndt, A., Henrichs, J., Bischof, C.: ViSTA: a multimodal, platform-independent VR-Toolkit based on WTK, VTK, and MPI. In: Fourth International Immersive Projection Technology Workshop (2000)
Vogt, D., Grehl, S., Berger, E., Ben Amor, H., Jung, B.: A data-driven method for real-time character animation in human-agent interaction. In: Bickmore, T., Marsella, S., Sidner, C. (eds.) IVA 2014. LNCS (LNAI), vol. 8637, pp. 463–476. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09767-1_57
Acknowledgment
We thank all our prior research assistants and students that helped improving the X-SITE CAVE. In particular we like to thank our colleague Christian Schubert for his long-term technical support, Henry Lehmann for his work on VTK and Paraview integration, Ben Lorenz for his Unreal Engine 4 integration and Gero Licht for the installation of projector remote controls.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Richter, F., Jung, B. (2024). X-SITE CAVE: Evolution of High-Resolution Immersive Display Towards a Cost-Efficient and Open-Source Design. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2024. Lecture Notes in Computer Science, vol 15027. Springer, Cham. https://doi.org/10.1007/978-3-031-71707-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-71707-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71706-2
Online ISBN: 978-3-031-71707-9
eBook Packages: Computer ScienceComputer Science (R0)