Abstract
This exploratory paper addresses the role of emotions in the management of collaborative networks (CNs) amid the rise of hybrid teams consisting of humans and AI agents. Building on previous research that emphasizes the critical role of emotions in fostering trust and preventing conflicts within CNs, we propose expanding these emotional frameworks to accommodate hybrid collaborative networks. The paper reviews the significance of human-AI collaboration, highlighting the complementary strengths of both and identifying three research streams: affective/sentient AI agents, human emotions modelling, and collective hybrid network emotions. Emphasizing the underexplored area of collective emotions, we suggest leveraging these insights to enhance the management and sustainability of hybrid networks. A framework for emotions estimation in CNs is described. Our aim is to identify challenges and guide future research in the integration of emotional intelligence within human-AI collaborative environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kapucu, N., Hu, Q.: Netw. Gover. Routl (2020). https://doi.org/10.4324/9781351056540
Baek, J.S., Meroni, A., Manzini, E.: A socio-technical approach to design for community resilience: a framework for analysis and design goal forming. Des. Stud. 40, 60–84 (2015). https://doi.org/10.1016/j.destud.2015.06.004
Paula Urze, A., Osório, L., Afsarmanesh, H., Camarinha-Matos, L.M.: A balanced sociotechnical framework for collaborative networks 4.0. In: Camarinha-Matos, L.M., Afsarmanesh, H., Ortiz, A. (eds.) Boosting Collaborative Networks 4.0. IAICT, vol. 598, pp. 485–498. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62412-5_40
Beckett, R.C., Jones, M.: Collaborative network success and the variable nature of trust. Prod. Plan. Control 23, 240–251 (2012). https://doi.org/10.1080/09537287.2011.627654
Msanjila, S.S., Afsarmanesh, H.: On modelling evolution of trust in organisations towards mediating collaboration. Prod. Plan. Control 22, 518–537 (2011). https://doi.org/10.1080/09537287.2010.536623
Ferrada, F., Camarinha-Matos, L.M.: A modelling framework for collaborative network emotions. Enterp. Inf. Syst. 13, 1164 (2019). https://doi.org/10.1080/17517575.2019.1633583
Ferrada, F., Camarinha-Matos, L.M.: Simulation model to estimate emotions in collaborative networks. Appl. Sci. (Switzerland). 9, 5202 (2019). https://doi.org/10.3390/app9235202
Peeters, M.M.M., et al.: Hybrid collective intelligence in a human–AI society. AI Soc. 36, 217–238 (2021). https://doi.org/10.1007/s00146-020-01005-y
Hemmer, P., Schemmer, M., Vössing, M., Kühl, N.: Human-AI Complementarity in Hybrid Intelligence Systems: A Structured Literature Review (2021)
Bosch, K., Schoonderwoerd, T., Blankendaal, R., Neerincx, M.: Six challenges for human-AI co-learning. In: Sottilare, R.A., Schwarz, J. (eds.) Adaptive Instructional Systems. LNCS, vol. 11597, pp. 572–589. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22341-0_45
Camarinha-Matos, L.M., Afsarmanesh, H.: The evolution path to collaborative networks 4.0. In: Goedicke, M., Neuhold, E., Rannenberg, K. (eds.) Advancing Research in Information and Communication Technology: IFIP’s Exciting First 60+ Years, Views from the Technical Committees and Working Groups. IFIPAICT, vol. 600, pp. 170–193. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81701-5_7
Watzek, V., Rehm, M., Mulder, R.H.: Exploring dynamics of emotional reactions in online collaboration of communities of learners and their relations with learning outcomes. Interact. Learn. Environ. 32, 90–101 (2024). https://doi.org/10.1080/10494820.2022.2078985
van Kleef, G.A., Côté, S.: The social effects of emotions. Annu. Rev. Psychol. 73, 629–658 (2022). https://doi.org/10.1146/annurev-psych-020821-010855
Zhang, G., Lu, D., Jia, X.: Emotional contagion in physical-cyber integrated networks: the phase transition perspective. IEEE Trans Cybern. 52, 7875–7888 (2022). https://doi.org/10.1109/TCYB.2021.3052766
Block, P., Burnett Heyes, S.: Sharing the load: contagion and tolerance of mood in social networks. Emotion 22, 1193–1207 (2022). https://doi.org/10.1037/emo0000952
de Sousa, R.: Emotion, http://plato.stanford.edu/entries/emotion/
Behnke, M., Saganowski, S., Kaczmarek, Ł.D., Kazienko, P.: Emotions studied by computer scientists and psychologists—a complementary perspective. In: 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). pp. 206–211. IEEE (2023). https://doi.org/10.1109/PerComWorkshops56833.2023.10150393
Lazarus, R.S.: Progress on a cognitive-motivational-relational theory of emotion. Am. Psychol. 46, 819–834 (1991). https://doi.org/10.1037/0003-066X.46.8.819
Picard, R.W.: Affective computing: challenges. Int. J. Hum. Comput. Stud. 59, 55–64 (2003). https://doi.org/10.1016/S1071-5819(03)00052-1
Perez-Aranda, J., Medina-Claros, S., Urrestarazu-Capellán, R.: Effects of a collaborative and gamified online learning methodology on class and test emotions. Educ. Inf. Technol (Dordr). 29, 1823–1855 (2024). https://doi.org/10.1007/s10639-023-11879-2
Xu, W., Lou, Y.-F.: Changes in the socially shared regulation, academic emotions, and product performance in venue-based collaborative learning. Active Learn. Higher Edn. 146, 978–1167 (2023). https://doi.org/10.1177/14697874231167331
Avry, S., Molinari, G., Bétrancourt, M., Chanel, G.: Sharing emotions contributes to regulating collaborative intentions in group problem-solving. Front. Psychol. 11, 1160 (2020). https://doi.org/10.3389/fpsyg.2020.01160
Bin, S.: Social network emotional marketing influence model of consumers’ purchase behavior. Sustainability. 15, 5001 (2023). https://doi.org/10.3390/su15065001
Lewenberg, Y., Bachrach, Y., Volkova, S.: Using emotions to predict user interest areas in online social networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). pp. 1–10. IEEE (2015). https://doi.org/10.1109/DSAA.2015.7344887
Aguado, G., Julian, V., Garcia-Fornes, A.: Multi-agent system for privacy protection through user emotions in social networks. In: Bajo, J., et al. (eds.) Highlights of Practical Applications of Cyber-Physical Multi-Agent Systems, pp. 235–245. Springer International Publishing, Cham (2017)
Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980). https://doi.org/10.1037/h0077714
Velásquez, J.D.: Cathexis: A Computational Model for the Generation of Emotions and Their Influence in the Behavior of Autonomous Agents, (1996)
Becker-Asano, C., Wachsmuth, I.: WASABI as a Case Study of How Misattribution of Emotion Can Be Modelled Computationally. In: A Blueprint for Affective Computing: A Sourcebook and Manual. pp. 179–193. Oxford University Press (2010)
Breazeal, C.: Emotion and sociable humanoid robots. Int. J. Hum. Comput. Stud. 59, 119–155 (2003). https://doi.org/10.1016/S1071-5819(03)00018-1
Wilson, J., Daugherty, P.R.: Collaborative Intelligence: Humans and AI Are Joining Forces. Harv Bus Rev. 114–123 (2018)
Gupta, P., Nguyen, T.N., Gonzalez, C., Woolley, A.W.: Fostering collective intelligence in human–AI collaboration: laying the groundwork for COHUMAIN. Top. Cogn. Sci. (2023). https://doi.org/10.1111/tops.12679
Richter, S., Richter, A.: Human-AI Collaboration in the Metaverse – How to Research the Future of Work? In: Proceedings of ECIS 2024-32nd European Conference on Information Systems. , Paphos, Cyprus (2024)
Zheng, Q., Gou, J., Camarinha-Matos, L.M., Zhang, J.Z., Zhang, X.: Digital capability requirements and improvement strategies: Organizational socialization of AI teammates. Inf. Process. Manag. 60, 103504 (2023). https://doi.org/10.1016/j.ipm.2023.103504
Deloitte Insights: The social enterprise in a world disrupted: Leading the shift from survive to thrive, https://www2.deloitte.com/content/dam/insights/us/articles/6935_2021-HC-Trends/di_human-capital-trends.pdf, (2021)
European Commission: AI Act, https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai, last accessed 2024/05/10
Pereira, L.M., Lopes, A.B.: Machine Ethics: From Machine Morals to the Machinery of Morality. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-39630-5
Pereira, L.M., Saptawijaya, A.: Programming Machine Ethics. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-29354-7
Sharma, A., Lin, I.W., Miner, A.S., Atkins, D.C., Althoff, T.: Human–AI collaboration enables more empathic conversations in text-based peer-to-peer mental health support. Nat Mach Intell. 5, 46–57 (2023). https://doi.org/10.1038/s42256-022-00593-2
Mallick, R., Flathmann, C., Lancaster, C., Hauptman, A., McNeese, N., Freeman, G.: The pursuit of happiness: the power and influence of AI teammate emotion in human-AI teamwork. Behav. Inf. Technol. (2023). https://doi.org/10.1080/0144929X.2023.2277909
McDuff, D., Czerwinski, M.: Designing emotionally sentient agents. Commun. ACM 61, 74–83 (2018). https://doi.org/10.1145/3186591
Camarinha-Matos, L.M., Afsarmanesh, H.: Towards a Reference Model for Collaborative Networked Organizations. In: Information Technology for Balanced Manufacturing Systems. BASYS 2006. Springer: Boston, MA, pp. 193–202 (2006). https://doi.org/10.1007/978-0-387-36594-7_21
Acknowledgements
This work was supported in part by the Portuguese FCT program UIDB/00066/2020 (Center of Technology and Systems – CTS).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Ferrada, F., Camarinha-Matos, L.M. (2024). Emotions in Human-AI Collaboration. In: Camarinha-Matos, L.M., Ortiz, A., Boucher, X., Barthe-Delanoë, AM. (eds) Navigating Unpredictability: Collaborative Networks in Non-linear Worlds. PRO-VE 2024. IFIP Advances in Information and Communication Technology, vol 726. Springer, Cham. https://doi.org/10.1007/978-3-031-71739-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-71739-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71738-3
Online ISBN: 978-3-031-71739-0
eBook Packages: Computer ScienceComputer Science (R0)