Abstract
This paper analyzes the results of modeling of piezoelectric elements with different shapes and different sets of material constants. This modeling is capable of determining the electrical impedance of a piezoelectric ceramic sample in the mode of harmonic oscillations. The aim of this study is to research the procedures of mathematical modeling for variously configured piezoelectric components intended for devices used in information, communication, and robotic systems and to delve into the key electromechanical characteristics of these components. The object of the research is the process of mathematical modeling of differently configured piezoelectric elements; the subject of the research is mathematical models of piezoelectric elements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Guangzhou Kailitech Electronics Co., Ltd. Professional Piezo Buzzer Manufacturer. https://www.kailitech.net/. Accessed 01 May 2024
Ahmed, A., et al.: Piezoelectric transducer design for simultaneous ultrasonic power transfer and backscatter communication. Smart Mater. Struct. 31, 095003 (2022)
Han, X., Huang, M., Wu, Z., et al.: Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging. Microsyst. Nanoeng. 9, 156 (2023). https://doi.org/10.1038/s41378-023-00620-1
Petrenko, S.F., Omelyan, A.V., Antonyuk, V.S., Novakovskyi, O.G.: Comparison of piezoelectric and DC motor control principles. J. Nano Electron. Phys. 10(5), 05032 (2018). https://doi.org/10.21272/jnep.10(5).05032
Bazilo, C.: Modelling of bimorph piezoelectric elements for biomedical devices. In: Hu, Z., Petoukhov, S., He, M. (eds.) Advances in Artificial Systems for Medicine and Education III. AIMEE 2019. Advances in Intelligent Systems and Computing, vol. 1126, pp. 151–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39162-1_14
Aladwan, I.M., Bazilo, C., Faure, E.: Modelling and development of multisectional disk piezoelectric transducers for critical application systems. Jordan J. Mech. Indus. Eng. 16(2), 275–282 (2022). https://jjmie.hu.edu.jo/vol16-2/09-48-21.pdf
Bazilo, C., Zagorskis, A., Petrishchev, O., Bondarenko, Yu., Zaika, V., Petrushko, Y.: Modelling of piezoelectric transducers for environmental monitoring. In: Proceedings of the 10th International Conference Environmental Engineering: Electronic Conference Proceedings. Vilnius, Lithuania (2017). https://doi.org/10.3846/enviro.2017.008
Grinchenko, V.T., Ulitko, A.F., Shulga, N.A.: Mechanics of coupled fields in structural elements. In: Electroelasticity, vol. 5. Naukova Dumka, Kyiv (1989)
Petrishchev, O.N., Bazilo, C.V.: Methodology of determination of physical and mechanical parameters of piezoelectric ceramics. J. Nano Electron. Phys. 9(3), 03022(6cc) (2017). https://doi.org/10.21272/jnep.9(3).03022
Sharapov, V.: Piezoceramic Sensors. Springer, Heidelberg (2011)
Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity of piezoelectric and electrically conducting bodies. Nauka (1988)
Guz, A.N., Shulga, N.A.: Dynamics of laminated and fibrous composites. Micromechanics of composite materials: Focus on Ukrainian research. Appl. Mech. Rev. 45(2), 35–60 (1992)
Petrishchev, O.N.: Harmonic vibrations of piezoceramic elements. P. 1. Harmonic vibrations of piezoceramic elements in vacuum and the method of resonance – antiresonance. Avers, Kyiv (2012)
Bondarenko, M.A., Bilokon, S.A., Antonyuk, V.S., Bondarenko, I.I.: Mechanism of origin and neutralization of residual triboelectricity at scanning of dielectric surfaces by a silicon probe of the atomic-force microscope. J. Nano Electron. Phys. 6(2), 02018 (2014)
Bogdan, АV., Petrishchev, ОN., Yakimenko, Y., Yanovskaya, Y.: Mathematical modeling of vibrations of thin piezoceramic disks to create functional piezoelectronics elements. Electron. Commun. 2, 35–42 (2009)
Meng, Y., Chen, G., Huang, M.: Piezoelectric materials: properties, advancements, and design strategies for high-temperature applications. Nanomaterials (Basel) 12(7), 1171 (2022). https://doi.org/10.3390/nano12071171
Sujito, S., Liliasari, L., Suhandi, A.: Differential equations: solving the oscillation system. J. Phys. Conf. Ser. IOP Publishing (2021). https://doi.org/10.1088/1742-6596/1869/1/012163
Medianyk, V.V., Bondarenko, Yu.Yu., Bazilo, C.V., Bondarenko, M.O.: Research of current-conducting electrodes of elements from piezoelectric ceramics modified by the low-energy ribbon-shaped electron stream. J. Nano Electron. Phys. 10(6), 06012(6cc) (2018). https://doi.org/10.21272/jnep.10(6).06012
Hermann, K.: Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists. John Wiley & Sons, Inc. (2016)
Mack, J.: Tensors. In: Structural Geology and Tectonics. Encyclopedia of Earth Science, pp. 796–800. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-31080-0_118
Sharapov, V.M., Filimonov, S.A., Sotula, Zh.V., Bazilo, K.V., Kunitskaya, L.G., Zaika, V.M.: Improvement of piezoceramic scanners. In: Proceedings of the 2013 IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO): Conference Proceedings, Kyiv, pp. 144–146 (2013). https://doi.org/10.1109/ELNANO.2013.6552063
Erhart, J., Pulpan, P., Pustka, M.: Piezoelectric Ceramic Resonators. Springer, Cham (2016)
Emery, J.D.: Piezoelectric Theory for Finite element Analysis of Ultrasonic Motors. AlliedSignal Inc. (1997)
Computing the piezoelectric tensor for AlN. https://docs.quantumatk.com/tutorials/piezoelectric/piezoelectric.html#computing-the-piezoelectric-tensor-for-aln. Accessed 01 May 2024
Didkovsky, V.S., Leiko, O.G., Savin, V.G.: Electroacoustic Piezoceramic Transducers (Calculation, Design, Construction). Imeks – LTD, Kirovograd (2006)
Savin, V.G., Zbrutsky, A.V., Morgun, I.O.: Unsteady Hydroelectroelasticity of Spherical Piezoelectric Transducers. NTUU KPI, Kyiv (2013)
Bazilo, C., Filimonov, S., Filimonova, N., Bacherikov, D.: Determination of geometric parameters of piezoceramic plates of bimorph screw linear piezo motor for liquid fertilizer dispenser. In: Hu, Z., Petoukhov, S., Yanovsky, F., He, M. (eds.) Advances in Computer Science for Engineering and Manufacturing. ISEM 2021. Lecture Notes in Networks and Systems, vol. 463, pp. 84–94. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-03877-8_8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bazilo, C. et al. (2024). Features of Mathematical Modeling Piezoelectrical Components of Devices in Information, Communication and Robotic Systems. In: Faure, E., et al. Information Technology for Education, Science, and Technics. ITEST 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-031-71801-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-71801-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71800-7
Online ISBN: 978-3-031-71801-4
eBook Packages: EngineeringEngineering (R0)