Skip to main content

Development of Moment Quality Criterion and Polynomial Methods for Signals Detection and Distinction in Non-Gaussian Noise

  • Conference paper
  • First Online:
Information Technology for Education, Science, and Technics (ITEST 2024)

Abstract

The paper analyzes the development of innovative models and methods for detecting and distinguishing signals in non-Gaussian noise. The authors propose a new quality criterion for statistical hypothesis testing, based on describing the random process through its moments. The paper suggests the use of stochastic polynomials to develop decision rules, where the optimal coefficients are determined by the new adapted moment quality criterion for multiple hypothesis testing. The paper provides an analysis of the synthesized models and polynomial algorithms used for detecting and distinguishing signals in non-Gaussian noise. A generalized structure of polynomial decision rules for multiple statistical hypothesis testing is suggested. The paper highlight the fact that nonlinear processing of samples, considering parameters of non-Gaussian distribution of random variables such as moments of the third and higher orders, can improve signal processing efficiency. This paper also explores the development of effective methods and algorithms for processing data in non-Gaussian noise. Research has demonstrated that the enhanced effectiveness of nonlinear signal processing, relative to existing results, is contingent upon accounting for the characteristics of non-Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hautus, M.J., Macmillan, N.A., Creelman, C.D.: Detection Theory: A User's Guide, 3rd edn. Routledge (2021). https://doi.org/10.4324/9781003203636

  2. Van Trees, H.L., Bell, K. L., Tiany, Z.: Detection Estimation and Modulation Theory, 2nd edn., Part I, Detection, Estimation, and Filtering Theory. John Wiley & Sons (2013)

    Google Scholar 

  3. Kay, S.M.: Fundamentals of Statistical Signal Processing. Prentice Hall PTR, NJ (2008)

    Google Scholar 

  4. Kassam, S.: Signal Detection in Non-Gaussian Noise. Springer Verlag, New York (2011)

    Google Scholar 

  5. Zhang, X.-D.: Modern Signal Processing. Tsinghua University Press (2023)

    Google Scholar 

  6. Duana, F., Chapeau-Blondeaub, F., Abbott, D.: Non-Gaussian noise benefits for coherent detection of narrow band weak signal. Phys. Lett. A 378, 1820–1824 (2014)

    Article  MathSciNet  Google Scholar 

  7. Tang, M., Rong, Y., De Maio, A., Chen, C., Zhou, J.: Adaptive radar detection in Gaussian disturbance with structured covariance matrix via invariance theory. IEEE Trans. Signal Process. 67(21), 5671–5685 (2019)

    Article  Google Scholar 

  8. Picinbono, B., Duvant, P.: Optimal linear-quadratic systems for detection and estimation. IEEE Trans. Inf. Theory 34(2), 304–311 (1988)

    Article  MathSciNet  Google Scholar 

  9. Chevalier, P., Picinbono, B.: Complex linear-quadratic systems for detection and array processing. IEEE Trans. Sig. Process. 44(10), 2631–2634 (1996)

    Google Scholar 

  10. Rousseau, D., Anand, G.V., Chapeau-Blondeau, F.: Noise–enhanced nonlinear detector to improve signal detection in non–Gaussian noise. IEEE Signal Process. 86(11), 3456–3465 (2006)

    Article  Google Scholar 

  11. Coulon, M., Tourneret, J.-Y., Swami, A.: Detection of multiplicative noise in stationary random processes using second- and higher order statistics. IEEE Trans. Signal Process. 48(9), 2566–2575 (2000)

    Article  MathSciNet  Google Scholar 

  12. Denkovski, D., Atanasovski, V., Gavrilovska, L.: HOS based goodness-of-fit testing signal detection. IEEE Commun. Lett. 16(3), 310–313 (2012)

    Article  Google Scholar 

  13. Malakhov, A.: Cumulant analysis of non-Gaussian processes and their transformation. Sovetskoe Radio (1979)

    Google Scholar 

  14. Kunchenko, Y.: Polynomial Parameter Estimations of Close to Gaussian Random Variables. Shaker Verlag, Aachen (2002)

    Google Scholar 

  15. Kunchenko, Y.: A moment performance criterions of a deccision-making for testing simple statistical conjecture. In: ISIT 1997, Ulm, Germany, 29 June–4 July, p. 407 (1997)

    Google Scholar 

  16. Vokorokos, L., Marchevsky, S., Ivchenko, A., Palahina, E., Palahin, V.: Parameters estimation of correlated non-Gaussian processes by the method of polynomial maximization. 11(3), 313–319 (2017). https://doi.org/10.1049/iet-spr.2016.0142

  17. Palahin, V., Juhar, J., Leleko, S., Polozhaenko, S., Palahina, E.: Computer simulation of signal detection in non-Gaussian noise with the Neyman-Pearson moment quality criterion. In: Proceedings of the 9th International IEEE Conference Dependable Systems, Services and Technologies DESSERT 2018, pp. 639–644 (2018). https://doi.org/10.1109/DESSERT.2018.8409203

  18. Palahin, V., Honcharov, A., Umanets, V.: Computer simulation of polynomial algorithms of radio signals distinction and estimating their parameters. Eastern-Eur. J. Enterp. Technol. 5(9), 31–39 (2014)

    Article  Google Scholar 

  19. Palahin, V., Juhar, Zorin, O., Viediernikov, D., Palahina, E.: Computer modeling of noise signals processing system in non-Gaussian noise. In: IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO-2018), Kiev, pp.658–662 (2018)

    Google Scholar 

  20. Smirnov, D., Palahina, E., Palahin, V.: Mathematical modeling of signal detection in non-gaussian correlated noise. In: Arsenyeva, O., Romanova, T., Sukhonos, M., Tsegelnyk, Y. (eds.) Smart Technologies in Urban Engineering. STUE 2022. Lecture Notes in Networks and Systems, vol. 536, pp. 65–74. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-20141-7_7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Palahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smirnov, D., Zorin, O., Palahina, E., Ivchenko, O., Palahin, V. (2024). Development of Moment Quality Criterion and Polynomial Methods for Signals Detection and Distinction in Non-Gaussian Noise. In: Faure, E., et al. Information Technology for Education, Science, and Technics. ITEST 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-031-71801-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71801-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71800-7

  • Online ISBN: 978-3-031-71801-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics