Abstract
This paper is based on the previous studies that allowed to define a family of square matrices of order 2 over the field of integers modulo prime. This family forms a finite field with the usual operations of matrix multiplication and addition. This paper aims at developing and applying an approach to determine primitive elements of such a finite field of square matrices. The relevance of this topic is explained by the fact that finding primitive elements is an integral component for applying a finite field in cryptographic transformation tasks, in particular, the Diffie-Hellman key agreement protocol. This study provides an answer to the conditions under which a matrix is a primitive element of a finite field, as well as the method for finding all primitive elements of a matrix field. It has been determined the number of different primitive elements of the field. Examples of searching for primitive elements for the finite field various parameters are provided. An example of using a finite field of square matrices of order 2 in the Diffie-Hellman key agreement protocol is demonstrated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Data Encryption Standard (DES) (1999)
Advanced Encryption Standard (AES) (2001)
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inform. Theory. 22, 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638
RSA Cryptography Standard (2012)
Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985). https://doi.org/10.1109/TIT.1985.1057074
IEEE Standard Specifications for Public-Key Cryptography (2000). http://ieeexplore.ieee.org/document/891000/
Digital Signature Standard (DSS) (2023). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978). https://doi.org/10.1145/359340.359342
Massey, J.K., Omura, J.L.: Method and apparatus for maintaining the privacy of digital messages conveyed by public transmission (1986)
Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172
Hhan, M., Yamakawa, T., Yun, A.: Quantum Complexity for Discrete Logarithms and Related Problems (2023). https://arxiv.org/abs/2307.03065
Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017, pp. 241–270. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_9
Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved Quantum Circuits for Elliptic Curve Discrete Logarithms. In: Ding, J., Tillich, J.-P. (eds.) Post-Quantum Cryptography, pp. 425–444. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_23
Gidney, C., Ekerå, M.: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021). https://doi.org/10.22331/q-2021-04-15-433
Ekerå, M., Håstad, J.: Quantum Algorithms for Computing Short Discrete Logarithms and Factoring RSA Integers. In: Lange, T., Takagi, T. (eds.) Post-Quantum Cryptography, pp. 347–363. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_20
Ekerå, M.: Quantum algorithms for computing general discrete logarithms and orders with tradeoffs. Journal of Mathematical Cryptology. 15, 359–407 (2021). https://doi.org/10.1515/jmc-2020-0006
Ekerå, M.: Revisiting Shor’s quantum algorithm for computing general discrete logarithms (2023). http://arxiv.org/abs/1905.09084
Huang, H., Li, C., Deng, L.: Public-key cryptography based on tropical circular matrices. Appli. Sci. 12 (2022). https://doi.org/10.3390/app12157401
Wang, X., Gao, S.: Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor product theory. Inf. Sci. 507, 16–36 (2020). https://doi.org/10.1016/j.ins.2019.08.041
Sysoienko, S., Myronets, I., Babenko, V.: Practical implementation effectiveness of the speed increasing method of group matrix cryptographic transformation. CEUR Workshop Proceedings. 2353, 402–412 (2019)
Rupa, Ch., Greeshmanth, Shah, M.A.: Novel secure data protection scheme using Martino homomorphic encryption. J Cloud Comp. 12, 47 (2023). https://doi.org/10.1186/s13677-023-00425-7
Haidary Makoui, F., Gulliver, T.A., Dakhilalian, M.: A new code-based digital signature based on the McEliece cryptosystem. IET Commun. 17, 1199–1207 (2023). https://doi.org/10.1049/cmu2.12607
Dupont, F.: A new Shamir’s three pass random matrix ciphering mechanism. J. Comput. Virol Hack Tech. (2023). https://doi.org/10.1007/s11416-023-00467-0
Faure, E., Shcherba, A., Stupka, B., Voronenko, I., Baikenov, A.: A method for reliable permutation transmission in short-packet communication systems. In: Faure, E., Danchenko, O., Bondarenko, M., Tryus, Y., Bazilo, C., Zaspa, G. (eds.) Information Technology for Education, Science, and Technics. ITEST 2022. Lecture Notes on Data Engineering and Communications Technologies, pp. 177–195. Springer Nature Switzerland, Cham (2023)
Al-Aazzeh, J., Faure, E., Makhynko, M., Lavdanskyi, A., Bazilo, C., Mesleh, A., Oraiqat, M.: Efficiency Assessment of the permutation-based frame synchronization method. Inter. J. Commun. Antenna Propagation 13 (2023)
Faure, E., Shcherba, A., Makhynko, M., Stupka, B., Nikodem, J., Shevchuk, R.: Permutation-Based block code for short packet communication systems. Sensors. 22, 5391 (2022). https://doi.org/10.3390/s22145391
Al-Azzeh, J., Faure, E., Shcherba, A., Stupka, B.: Permutation-based frame synchronization method for data transmission systems with short packets. Egyptian Informatics Journal. 23, 529–545 (2022). https://doi.org/10.1016/j.eij.2022.05.005
Al-Aazzeh, J., Ayyoub, B., Faure, E., Shvydkyi, V., Kharin, O., Lavdanskyi, A.: Telecommunication systems with multiple access based on data factorial coding. Inter. J. Commun. Antenna Propagat. 10, 102–113 (2020). https://doi.org/10.15866/irecap.v10i2.17216
Babenko, V., Myroniuk, T., Lavdanskyi, A., Tarasenko, Ya., Myroniuk, O.: Information-Driven Permutation Operations for Cryptographic Transformation: CEUR Workshop Proceed. 3654, 137–149 (2024)
Shcherba, A., Faure, E., Skutskyi, A., Kharin, O.: Families of Square Commutative 2х2 Matrices. CEUR Workshop Proceedings. 3550, 289–296 (2023)
Faure, E., Shcherba, A., Skutskyi, A., Lavdanskyi, A.: A Finite Field of Square Matrices of Order 2. CEUR Workshop Proceedings. 3550, 306–312 (2023)
Gantmacher, F.R.: The theory of matrices. American Mathematical Soc, Providence, RI (1959)
Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge; New York (2012)
Burton, D.M.: The history of mathematics: an introduction. McGraw-Hill, New York (2011)
Lidl, R., Niederreiter, H.: Finite fields. Cambridge University Press, Cambridge (1997)
Viete, F.: Opera Mathematica in unum volumen congesta. Bonaventure & Abraham Elzevier, Leiden (1646)
Arnold, V.I.: Fermat dynamics, matrix arithmetics, finite circles, and finite Lobachevsky planes. Funct. Anal. Appl. 38, 1–13 (2004). https://doi.org/10.1023/B:FAIA.0000024863.06462.68
Laughlin, J.M.: Combinatorial identities deriving from the n-th power of a 2x2 matrix. Integers. 4, 1–15 (2004). https://doi.org/10.48550/ARXIV.1812.11168
Vinogradov, I.M.: Elements of number theory. Dover Publications Inc, Mineola, New York (2016)
Acknowledgements
This research was funded by the Ministry of Education and Science of Ukraine under grant 0123U100270.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shcherba, A., Faure, E., Vartiainen, T., Khaliavka, V. (2024). Primitive Elements in the Finite Field of Square Matrices of Order 2 for Cryptographic Applications. In: Faure, E., et al. Information Technology for Education, Science, and Technics. ITEST 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-031-71804-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-71804-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71803-8
Online ISBN: 978-3-031-71804-5
eBook Packages: EngineeringEngineering (R0)