Skip to main content

Primitive Elements in the Finite Field of Square Matrices of Order 2 for Cryptographic Applications

  • Conference paper
  • First Online:
Information Technology for Education, Science, and Technics (ITEST 2024)

Abstract

This paper is based on the previous studies that allowed to define a family of square matrices of order 2 over the field of integers modulo prime. This family forms a finite field with the usual operations of matrix multiplication and addition. This paper aims at developing and applying an approach to determine primitive elements of such a finite field of square matrices. The relevance of this topic is explained by the fact that finding primitive elements is an integral component for applying a finite field in cryptographic transformation tasks, in particular, the Diffie-Hellman key agreement protocol. This study provides an answer to the conditions under which a matrix is a primitive element of a finite field, as well as the method for finding all primitive elements of a matrix field. It has been determined the number of different primitive elements of the field. Examples of searching for primitive elements for the finite field various parameters are provided. An example of using a finite field of square matrices of order 2 in the Diffie-Hellman key agreement protocol is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Data Encryption Standard (DES) (1999)

    Google Scholar 

  2. Advanced Encryption Standard (AES) (2001)

    Google Scholar 

  3. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inform. Theory. 22, 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

    Article  MathSciNet  Google Scholar 

  4. RSA Cryptography Standard (2012)

    Google Scholar 

  5. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985). https://doi.org/10.1109/TIT.1985.1057074

    Article  MathSciNet  Google Scholar 

  6. IEEE Standard Specifications for Public-Key Cryptography (2000). http://ieeexplore.ieee.org/document/891000/

  7. Digital Signature Standard (DSS) (2023). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

  8. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978). https://doi.org/10.1145/359340.359342

    Article  MathSciNet  Google Scholar 

  9. Massey, J.K., Omura, J.L.: Method and apparatus for maintaining the privacy of digital messages conveyed by public transmission (1986)

    Google Scholar 

  10. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172

    Article  MathSciNet  Google Scholar 

  11. Hhan, M., Yamakawa, T., Yun, A.: Quantum Complexity for Discrete Logarithms and Related Problems (2023). https://arxiv.org/abs/2307.03065 

  12. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017, pp. 241–270. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_9

    Chapter  Google Scholar 

  13. Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved Quantum Circuits for Elliptic Curve Discrete Logarithms. In: Ding, J., Tillich, J.-P. (eds.) Post-Quantum Cryptography, pp. 425–444. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_23

    Chapter  Google Scholar 

  14. Gidney, C., Ekerå, M.: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021). https://doi.org/10.22331/q-2021-04-15-433

  15. Ekerå, M., Håstad, J.: Quantum Algorithms for Computing Short Discrete Logarithms and Factoring RSA Integers. In: Lange, T., Takagi, T. (eds.) Post-Quantum Cryptography, pp. 347–363. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_20

    Chapter  Google Scholar 

  16. Ekerå, M.: Quantum algorithms for computing general discrete logarithms and orders with tradeoffs. Journal of Mathematical Cryptology. 15, 359–407 (2021). https://doi.org/10.1515/jmc-2020-0006

    Article  MathSciNet  Google Scholar 

  17. Ekerå, M.: Revisiting Shor’s quantum algorithm for computing general discrete logarithms (2023). http://arxiv.org/abs/1905.09084

    Google Scholar 

  18. Huang, H., Li, C., Deng, L.: Public-key cryptography based on tropical circular matrices. Appli. Sci. 12 (2022). https://doi.org/10.3390/app12157401

  19. Wang, X., Gao, S.: Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor product theory. Inf. Sci. 507, 16–36 (2020). https://doi.org/10.1016/j.ins.2019.08.041

    Article  MathSciNet  Google Scholar 

  20. Sysoienko, S., Myronets, I., Babenko, V.: Practical implementation effectiveness of the speed increasing method of group matrix cryptographic transformation. CEUR Workshop Proceedings. 2353, 402–412 (2019)

    Google Scholar 

  21. Rupa, Ch., Greeshmanth, Shah, M.A.: Novel secure data protection scheme using Martino homomorphic encryption. J Cloud Comp. 12, 47 (2023). https://doi.org/10.1186/s13677-023-00425-7

  22. Haidary Makoui, F., Gulliver, T.A., Dakhilalian, M.: A new code-based digital signature based on the McEliece cryptosystem. IET Commun. 17, 1199–1207 (2023). https://doi.org/10.1049/cmu2.12607

    Article  Google Scholar 

  23. Dupont, F.: A new Shamir’s three pass random matrix ciphering mechanism. J. Comput. Virol Hack Tech. (2023). https://doi.org/10.1007/s11416-023-00467-0

  24. Faure, E., Shcherba, A., Stupka, B., Voronenko, I., Baikenov, A.: A method for reliable permutation transmission in short-packet communication systems. In: Faure, E., Danchenko, O., Bondarenko, M., Tryus, Y., Bazilo, C., Zaspa, G. (eds.) Information Technology for Education, Science, and Technics. ITEST 2022. Lecture Notes on Data Engineering and Communications Technologies, pp. 177–195. Springer Nature Switzerland, Cham (2023)

    Google Scholar 

  25. Al-Aazzeh, J., Faure, E., Makhynko, M., Lavdanskyi, A., Bazilo, C., Mesleh, A., Oraiqat, M.: Efficiency Assessment of the permutation-based frame synchronization method. Inter. J. Commun. Antenna Propagation 13 (2023)

    Google Scholar 

  26. Faure, E., Shcherba, A., Makhynko, M., Stupka, B., Nikodem, J., Shevchuk, R.: Permutation-Based block code for short packet communication systems. Sensors. 22, 5391 (2022). https://doi.org/10.3390/s22145391

  27. Al-Azzeh, J., Faure, E., Shcherba, A., Stupka, B.: Permutation-based frame synchronization method for data transmission systems with short packets. Egyptian Informatics Journal. 23, 529–545 (2022). https://doi.org/10.1016/j.eij.2022.05.005

    Article  Google Scholar 

  28. Al-Aazzeh, J., Ayyoub, B., Faure, E., Shvydkyi, V., Kharin, O., Lavdanskyi, A.: Telecommunication systems with multiple access based on data factorial coding. Inter. J. Commun. Antenna Propagat. 10, 102–113 (2020). https://doi.org/10.15866/irecap.v10i2.17216

  29. Babenko, V., Myroniuk, T., Lavdanskyi, A., Tarasenko, Ya., Myroniuk, O.: Information-Driven Permutation Operations for Cryptographic Transformation: CEUR Workshop Proceed. 3654, 137–149 (2024)

    Google Scholar 

  30. Shcherba, A., Faure, E., Skutskyi, A., Kharin, O.: Families of Square Commutative 2х2 Matrices. CEUR Workshop Proceedings. 3550, 289–296 (2023)

    Google Scholar 

  31. Faure, E., Shcherba, A., Skutskyi, A., Lavdanskyi, A.: A Finite Field of Square Matrices of Order 2. CEUR Workshop Proceedings. 3550, 306–312 (2023)

    Google Scholar 

  32. Gantmacher, F.R.: The theory of matrices. American Mathematical Soc, Providence, RI (1959)

    Google Scholar 

  33. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge; New York (2012)

    Book  Google Scholar 

  34. Burton, D.M.: The history of mathematics: an introduction. McGraw-Hill, New York (2011)

    Google Scholar 

  35. Lidl, R., Niederreiter, H.: Finite fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  36. Viete, F.: Opera Mathematica in unum volumen congesta. Bonaventure & Abraham Elzevier, Leiden (1646)

    Google Scholar 

  37. Arnold, V.I.: Fermat dynamics, matrix arithmetics, finite circles, and finite Lobachevsky planes. Funct. Anal. Appl. 38, 1–13 (2004). https://doi.org/10.1023/B:FAIA.0000024863.06462.68

    Article  MathSciNet  Google Scholar 

  38. Laughlin, J.M.: Combinatorial identities deriving from the n-th power of a 2x2 matrix. Integers. 4, 1–15 (2004). https://doi.org/10.48550/ARXIV.1812.11168

  39. Vinogradov, I.M.: Elements of number theory. Dover Publications Inc, Mineola, New York (2016)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Education and Science of Ukraine under grant 0123U100270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Faure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shcherba, A., Faure, E., Vartiainen, T., Khaliavka, V. (2024). Primitive Elements in the Finite Field of Square Matrices of Order 2 for Cryptographic Applications. In: Faure, E., et al. Information Technology for Education, Science, and Technics. ITEST 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-031-71804-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71804-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71803-8

  • Online ISBN: 978-3-031-71804-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics