Skip to main content

Overview of eRisk 2024: Early Risk Prediction on the Internet

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2024)

Abstract

This paper presents eRisk 2024, the eighth edition of the CLEF conference’s lab, focusing on early risk detection. Since its beginning, the lab has been dedicated to exploring evaluation methodologies, effectiveness metrics, and related processes in early risk detection. The utility of early alerting models encompasses various sectors, notably health and safety. eRisk 2024 featured three main tasks. The first task required participants to rank sentences according to their relevance to standardised symptoms of depression. The second task aimed at the early detection of anorexia indicators. The third task involved automatically estimating an eating disorders questionnaire by analysing users’ social media posts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://erisk.irlab.org/guidelines_erisk24_task1.html.

  2. 2.

    https://early.irlab.org/server.html.

  3. 3.

    https://www.corc.uk.net/media/1273/ede-q_quesionnaire.pdf.

  4. 4.

    https://www.corc.uk.net/media/1951/ede_170d.pdf.

References

  1. Ang, B.H., Gollapalli, S.D., Ng, S.K.: NUS-IDS@eRisk2024: ranking sentences for depression symptoms using early maladaptive schemas and ensembles. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  2. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression, pp. 283–287 (2009). https://doi.org/10.1109/ISDA.2009.230

  3. Barachanou, A., Tsalakanidou, F., Papadopoulos, S.: REBECCA at eRisk 2024: search for symptoms of depression using sentence embeddings and prompt-based filtering. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  4. Bascuñana, A.P., Bedmar, I.S.: APB-UC3M at eRisk 2024: natural language processing and deep learning for the early detection of mental disorders. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  5. Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., Erbaugh, J.: An inventory for measuring depression. JAMA Psychiatry 4(6), 561–571 (1961)

    Google Scholar 

  6. Fabregat, H., Deniz, D., Duque, A., Araujo, L., Martinez-Romo, J.: NLP-UNED at eRisk 2024: approximate nearest neighbors with encoding refinement for early detecting signs of anorexia. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  7. Fairburn, C.G., Cooper, Z., O’Connor, M.: Eating disorder examination Edition 17.0D (2014)

    Google Scholar 

  8. Guecha, D., Potdar, A., Miyaguchi, A.: DS@GT eRisk 2024 working notes. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  9. Hanciu, R.M.: MindwaveML at eRisk 2024: identifying depression symptoms in reddit users. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  10. Losada, D.E., Crestani, F.: A test collection for research on depression and language use. In: Proceedings Conference and Labs of the Evaluation Forum CLEF 2016, Evora, Portugal (2016)

    Google Scholar 

  11. Losada, D.E., Crestani, F., Parapar, J.: eRISK 2017: CLEF lab on early risk prediction on the internet: experimental foundations. In: Jones, G.J.F., et al. (eds.) CLEF 2017. LNCS, vol. 10456, pp. 346–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65813-1_30

    Chapter  Google Scholar 

  12. Losada, D.E., Crestani, F., Parapar, J.: eRISK 2017: CLEF lab on early risk prediction on the internet: experimental foundations. In: CEUR Proceedings of the Conference and Labs of the Evaluation Forum, CLEF 2017. Dublin, Ireland (2017)

    Google Scholar 

  13. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk 2018: early risk prediction on the internet (extended lab overview). In: CEUR Proceedings of the Conference and Labs of the Evaluation Forum, CLEF 2018, Avignon, France (2018)

    Google Scholar 

  14. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk: early risk prediction on the internet. In: Bellot, P., et al. (eds.) CLEF 2018. LNCS, vol. 11018, pp. 343–361. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98932-7_30

    Chapter  Google Scholar 

  15. Losada, D.E., Crestani, F., Parapar, J.: Early detection of risks on the internet: an exploratory campaign. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019, Part II. LNCS, vol. 11438, pp. 259–266. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15719-7_35

    Chapter  Google Scholar 

  16. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk 2019 early risk prediction on the internet. In: Crestani, F., et al. (eds.) CLEF 2019. LNCS, vol. 11696, pp. 340–357. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_27

    Chapter  Google Scholar 

  17. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk at CLEF 2019: early risk prediction on the Internet (extended overview). In: CEUR Proceedings of the Conference and Labs of the Evaluation Forum, CLEF 2019, Lugano, Switzerland (2019)

    Google Scholar 

  18. Losada, D.E., Crestani, F., Parapar, J.: eRisk 2020: self-harm and depression challenges. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 557–563. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_72

    Chapter  Google Scholar 

  19. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk 2020: early risk prediction on the internet. In: Arampatzis, A., et al. (eds.) CLEF 2020. LNCS, vol. 12260, pp. 272–287. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58219-7_20

    Chapter  Google Scholar 

  20. Losada, D.E., Crestani, F., Parapar, J.: Overview of erisk at CLEF 2020: early risk prediction on the internet (extended overview). In: Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum, Thessaloniki, Greece (2020)

    Google Scholar 

  21. Maupomé, D., Ferstler, Y., Mosser, S., Meurs, M.J.: Automatically finding evidence, predicting answers in mental health self-report questionnaires. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  22. Mármol-Romero, A.M., Adrián Moreno-Muñoz, P.A.O., Valencia-Segura, K.M., Martínez-Cámara, E., García-Vega, M., Montejo-Ráez, A.: SINAI at eRisk@ CLEF 2024: Approaching the Search for Symptoms of Depression and Early Detection of Anorexia Signs using Natural Language Processing. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  23. Otero, D., Parapar, J., Barreiro, Á.: Beaver: efficiently building test collections for novel tasks. In: Proceedings of the First Joint Conference of the Information Retrieval Communities in Europe (CIRCLE 2020), Samatan, Gers, France (2020)

    Google Scholar 

  24. Otero, D., Parapar, J., Barreiro, Á.: The wisdom of the rankers: a cost-effective method for building pooled test collections without participant systems. In: SAC 2021: The 36th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, Republic of Korea, 22–26 March 2021, pp. 672–680 (2021)

    Google Scholar 

  25. Pan, R., Díaz, J.A.G., Beltrán, T.B., Valencia-Garcia, R.: UMUTeam at eRisk@CLEF 2024: fine-tuning transformer models with sentiment features for early detection and severity measurement of eating disorders. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  26. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: eRisk 2021: pathological gambling, self-harm and depression challenges. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021, Part II. LNCS, vol. 12657, pp. 650–656. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_76

    Chapter  Google Scholar 

  27. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: Overview of eRisk 2021: early risk prediction on the internet. In: Candan, K.S., et al. (eds.) CLEF 2021. LNCS, vol. 12880, pp. 324–344. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85251-1_22

    Chapter  Google Scholar 

  28. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: Overview of erisk at CLEF 2021: early risk prediction on the internet (extended overview). In: Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest, Romania, 21st–24th September 2021, pp. 864–887 (2021)

    Google Scholar 

  29. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: eRisk 2022: pathological gambling, depression, and eating disorder challenges. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13186, pp. 436–442. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99739-7_54

    Chapter  Google Scholar 

  30. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: Overview of erisk 2022: early risk prediction on the internet. In: Barrón-Cedeño, A., et al. (eds.) CLEF 2022. LNCS, vol. 13390, pp. 233–256. Springer, CHam (2022). https://doi.org/10.1007/978-3-031-13643-6_18

    Chapter  Google Scholar 

  31. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: Overview of erisk at CLEF 2022: early risk prediction on the internet (extended overview). In: Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, Bologna, Italy, 5–8 September 2022, pp. 821–850 (2022)

    Google Scholar 

  32. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: erisk 2023: depression, pathological gambling, and eating disorder challenges. In: Kamps, J., et al. (eds.) ECIR 2023. LNCS, vol. 13982, pp. 585–592. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28241-6_67

    Chapter  Google Scholar 

  33. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: Overview of erisk 2023: early risk prediction on the internet. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction - 14th International Conference of the CLEF Association, CLEF 2023, Thessaloniki, Greece, 18–21 September 2023, pp. 233–256 (2023)

    Google Scholar 

  34. Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F.: Overview of erisk at CLEF 2023: Early risk prediction on the internet (extended overview). In: Proceedings of the Working Notes of CLEF 2023 - Conference and Labs of the Evaluation Forum, Thessaloniki, Greece (2023)

    Google Scholar 

  35. Prasanna, S., Gulati, A.S., Karmakar, S., Hiranmayi, M.Y., Madasamy, A.K.: Measuring the severity of the signs of eating disorders using machine learning techniques. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  36. Riewe-Perła, O., Filipowska, A.: Combining Recommender Systems and Language Models in Early Detection of Signs of Anorexia. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  37. Sadeque, F., Xu, D., Bethard, S.: Measuring the latency of depression detection in social media. In: WSDM, pp. 495–503. ACM (2018)

    Google Scholar 

  38. Sarangi, P., Kumar, S., Agrawal, S., Basu, T.: A natural language processing based framework for early detection of anorexia via sequential text processing. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  39. Segarra, A.C., Esteve, V.A., Marco, A.M., Oliver, L.F.H.: ELiRF-VRAIN at eRisk 2024: using LongFormers for early detection of signs of anorexia. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  40. Thompson, H., Errecalde, M.: A time-aware approach to early detection of anorexia: UNSL at eRisk 2024. In: Working Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, Grenoble, France (2024)

    Google Scholar 

  41. Trotzek, M., Koitka, S., Friedrich, C.: Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences. IEEE Trans. Knowl. Data Eng. (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by project PLEC2021-007662 (MCIN/AEI/10.13039/ 501100011033, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación, Plan de Recuperación, Transformación y Resiliencia, Unión Europea-Next Generation EU). The first and second authors thank the financial support supplied by the Xunta de Galicia-Consellería de Cultura, Educación, Formación Profesional e Universidade (GPC ED431B 2022/33) and the European Regional Development Fund and project PID2022-137061OB-C21 (MCIN/AEI/ 10.13039/501100011033, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación, Proyectos de Generación de Conocimiento; supported by “ERDF A way of making Europe”, by the “European Union”). The CITIC, as a center accredited for excellence within the Galician University System and a member of the CIGUS Network, receives subsidies from the Department of Education, Science, Universities, and Vocational Training of the Xunta de Galicia. Additionally, CITIC is co-financed by the EU through the FEDER Galicia 2021–27 operational program (Ref. ED431G 2023/01). The third author thanks the financial support supplied by the Xunta de Galicia-Consellería de Cultura, Educación, Formación Profesional e Universidade (accreditation 2019–2022 ED431G-2019/04, ED431C 2022/19) and the European Regional Development Fund, which acknowledges the CiTIUS-Research Center in Intelligent Technologies of the University of Santiago de Compostela as a Research Center of the Galician University System. David E. Losada also thanks the financial support obtained from project SUBV23/00002 (Ministerio de Consumo, Subdirección General de Regulación del Juego) and project PID2022-137061OB-C22 (Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación, Proyectos de Generación de Conocimiento; supported by the European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Parapar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parapar, J., Martín-Rodilla, P., Losada, D.E., Crestani, F. (2024). Overview of eRisk 2024: Early Risk Prediction on the Internet. In: Goeuriot, L., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2024. Lecture Notes in Computer Science, vol 14959. Springer, Cham. https://doi.org/10.1007/978-3-031-71908-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71908-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71907-3

  • Online ISBN: 978-3-031-71908-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics