Abstract
Acoustic Soft Tactile (AST) skin is a novel sensing technology which derives tactile information from the modulation of acoustic waves travelling through the skin’s embedded acoustic channels. A generalisable data-driven calibration model maps the acoustic modulations to the corresponding tactile information in the form of contact forces with their contact locations and contact geometries. AST skin technology has been highlighted for its easy customisation. As a case study, this paper discusses the possibility of using AST skin on a custom-built robotic end effector finger for strawberry handling. The paper delves into the design, prototyping, and calibration method to sensorise the end effector finger with AST skin. A real-time force-controlled gripping experiment is conducted with the sensorised finger to handle strawberries by their peduncle. The finger could successfully grip the strawberry peduncle by maintaining a preset force of 2 N with a maximum Mean Absolute Error (MAE) of 0.31 N over multiple peduncle diameters and strawberry weight classes. Moreover, this study sets confidence in the usability of AST skin in generating real-time tactile feedback for robot manipulation tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aliasgarian, S., Ghassemzadeh, H.R., Moghaddam, M., Ghaffari, H., et al.: Mechanical damage of strawberry during harvest and postharvest operations. World Appl. Sci. J. 22(7), 969–974 (2013)
Chen, Z., Zhang, S., Luo, S., Sun, F., Fang, B.: Tacchi: a pluggable and low computational cost elastomer deformation simulator for optical tactile sensors. IEEE Robot. Autom. Lett. 8(3), 1239–1246 (2023). https://doi.org/10.1109/LRA.2023.3237042
Deng, Z., Jonetzko, Y., Zhang, L., Zhang, J.: Grasping force control of multi-fingered robotic hands through tactile sensing for object stabilization. Sensors 20(4), 1050 (2020)
Diguet, G., Froemel, J., Muroyama, M., Ohtaka, K.: Tactile sensing using magnetic foam. Polymers 14(4), 834 (2022)
Fujiwara, E., de Oliveira Rosa, L.: Agar-based soft tactile transducer with embedded optical fiber specklegram sensor. Results Opt. 10, 100345 (2023)
Gomes, D.F., Luo, S.: Geltip tactile sensor for dexterous manipulation in clutter. In: Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation, pp. 3–21. Elsevier (2022)
Gong, D., He, R., Yu, J., Zuo, G.: A pneumatic tactile sensor for co-operative robots. Sensors 17(11), 2592 (2017)
Lambeta, M., et al.: Digit: a novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE Robot. Autom. Lett. 5(3), 3838–3845 (2020)
Li, Q., et al.: Wide-range strain sensors based on highly transparent and supremely stretchable graphene/ag-nanowires hybrid structures. Small 12(36), 5058–5065 (2016)
Ono, M., Shizuki, B., Tanaka, J.: Sensing touch force using active acoustic sensing. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 355–358 (2015)
Park, K., Yuk, H., Yang, M., Cho, J., Lee, H., Kim, J.: A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing. Sci. Robot. 7(67), eabm7187 (2022)
Parsa, S., Debnath, B., Khan, M.A., E, A.G.: Modular autonomous strawberry picking robotic system. J. Field Robot. (2023)
Rajendran, V., Mandil, W., Parsons, S.EA.G.: Acoustic soft tactile skin (ast skin). arXiv preprint arXiv:2303.17355 (2023)
Rajendran, V., Parsa, S., Parsons, S.E.A.G.: Peduncle gripping and cutting force for strawberry harvesting robotic end-effector design. In: 2022 4th International Conference on Control and Robotics (ICCR), pp. 59–64 (2022). https://doi.org/10.1109/ICCR55715.2022.10053882
Rehan, M., Saleem, M.M., Tiwana, M.I., Shakoor, R.I., Cheung, R.: A soft multi-axis high force range magnetic tactile sensor for force feedback in robotic surgical systems. Sensors 22(9), 3500 (2022)
Roberts, P., Zadan, M., Majidi, C.: Soft tactile sensing skins for robotics. Curr. Robot. Rep. 2, 343–354 (2021)
for Robots, I.P.: Calculation of gripping force. https://en.iprworldwide.com/calculation-of-gripping-force/. Accessed 20 May 2022
Sferrazza, C., D’Andrea, R.: Design, motivation and evaluation of a full-resolution optical tactile sensor. Sensors 19(4), 928 (2019)
Song, K., et al.: Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci. Rep. 9(1), 8988 (2019)
Visentin, F., Castellini, F., Muradore, R.: A soft, sensorized gripper for delicate harvesting of small fruits. Comput. Electron. Agric. 213, 108202 (2023)
Vishnu, R.S., Parsons, S.E.A.G.: Single and bi-layered 2-d acoustic soft tactile skin. In: 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), pp. 133–138 (2024). https://doi.org/10.1109/RoboSoft60065.2024.10522056
Wall, V., Zöller, G., Brock, O.: Passive and active acoustic sensing for soft pneumatic actuators. Int. J. Robot. Res. 42(3), 108–122 (2023)
Wang, C., et al.: Tactile sensing technology in bionic skin: a review. Biosens. Bioelectron. 220, 114882 (2023)
Ward-Cherrier, B., et al.: The tactip family: soft optical tactile sensors with 3d-printed biomimetic morphologies. Soft Rob. 5(2), 216–227 (2018)
Wei, Y., Xu, Q.: An overview of micro-force sensing techniques. Sens. Actuators A 234, 359–374 (2015)
Wu, H., Zheng, B., Wang, H., Ye, J.: New flexible tactile sensor based on electrical impedance tomography. Micromachines 13(2), 185 (2022)
Zimmer, J., Hellebrekers, T., Asfour, T., Majidi, C., Kroemer, O.: Predicting grasp success with a soft sensing skin and shape-memory actuated gripper. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7120–7127. IEEE (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rajendran, S.V., Nazari, K., Parsons, S., Ghalamzan, E.A. (2025). Enabling Tactile Feedback for Robotic Strawberry Handling Using AST Skin. In: Huda, M.N., Wang, M., Kalganova, T. (eds) Towards Autonomous Robotic Systems. TAROS 2024. Lecture Notes in Computer Science(), vol 15051. Springer, Cham. https://doi.org/10.1007/978-3-031-72059-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-72059-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72058-1
Online ISBN: 978-3-031-72059-8
eBook Packages: Computer ScienceComputer Science (R0)