Skip to main content

Enabling Tactile Feedback for Robotic Strawberry Handling Using AST Skin

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15051))

Included in the following conference series:

  • 275 Accesses

Abstract

Acoustic Soft Tactile (AST) skin is a novel sensing technology which derives tactile information from the modulation of acoustic waves travelling through the skin’s embedded acoustic channels. A generalisable data-driven calibration model maps the acoustic modulations to the corresponding tactile information in the form of contact forces with their contact locations and contact geometries. AST skin technology has been highlighted for its easy customisation. As a case study, this paper discusses the possibility of using AST skin on a custom-built robotic end effector finger for strawberry handling. The paper delves into the design, prototyping, and calibration method to sensorise the end effector finger with AST skin. A real-time force-controlled gripping experiment is conducted with the sensorised finger to handle strawberries by their peduncle. The finger could successfully grip the strawberry peduncle by maintaining a preset force of 2 N with a maximum Mean Absolute Error (MAE) of 0.31 N over multiple peduncle diameters and strawberry weight classes. Moreover, this study sets confidence in the usability of AST skin in generating real-time tactile feedback for robot manipulation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliasgarian, S., Ghassemzadeh, H.R., Moghaddam, M., Ghaffari, H., et al.: Mechanical damage of strawberry during harvest and postharvest operations. World Appl. Sci. J. 22(7), 969–974 (2013)

    MATH  Google Scholar 

  2. Chen, Z., Zhang, S., Luo, S., Sun, F., Fang, B.: Tacchi: a pluggable and low computational cost elastomer deformation simulator for optical tactile sensors. IEEE Robot. Autom. Lett. 8(3), 1239–1246 (2023). https://doi.org/10.1109/LRA.2023.3237042

    Article  Google Scholar 

  3. Deng, Z., Jonetzko, Y., Zhang, L., Zhang, J.: Grasping force control of multi-fingered robotic hands through tactile sensing for object stabilization. Sensors 20(4), 1050 (2020)

    Article  MATH  Google Scholar 

  4. Diguet, G., Froemel, J., Muroyama, M., Ohtaka, K.: Tactile sensing using magnetic foam. Polymers 14(4), 834 (2022)

    Article  Google Scholar 

  5. Fujiwara, E., de Oliveira Rosa, L.: Agar-based soft tactile transducer with embedded optical fiber specklegram sensor. Results Opt. 10, 100345 (2023)

    Article  MATH  Google Scholar 

  6. Gomes, D.F., Luo, S.: Geltip tactile sensor for dexterous manipulation in clutter. In: Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation, pp. 3–21. Elsevier (2022)

    Google Scholar 

  7. Gong, D., He, R., Yu, J., Zuo, G.: A pneumatic tactile sensor for co-operative robots. Sensors 17(11), 2592 (2017)

    Article  MATH  Google Scholar 

  8. Lambeta, M., et al.: Digit: a novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE Robot. Autom. Lett. 5(3), 3838–3845 (2020)

    Article  MATH  Google Scholar 

  9. Li, Q., et al.: Wide-range strain sensors based on highly transparent and supremely stretchable graphene/ag-nanowires hybrid structures. Small 12(36), 5058–5065 (2016)

    Article  MATH  Google Scholar 

  10. Ono, M., Shizuki, B., Tanaka, J.: Sensing touch force using active acoustic sensing. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 355–358 (2015)

    Google Scholar 

  11. Park, K., Yuk, H., Yang, M., Cho, J., Lee, H., Kim, J.: A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing. Sci. Robot. 7(67), eabm7187 (2022)

    Google Scholar 

  12. Parsa, S., Debnath, B., Khan, M.A., E, A.G.: Modular autonomous strawberry picking robotic system. J. Field Robot. (2023)

    Google Scholar 

  13. Rajendran, V., Mandil, W., Parsons, S.EA.G.: Acoustic soft tactile skin (ast skin). arXiv preprint arXiv:2303.17355 (2023)

  14. Rajendran, V., Parsa, S., Parsons, S.E.A.G.: Peduncle gripping and cutting force for strawberry harvesting robotic end-effector design. In: 2022 4th International Conference on Control and Robotics (ICCR), pp. 59–64 (2022). https://doi.org/10.1109/ICCR55715.2022.10053882

  15. Rehan, M., Saleem, M.M., Tiwana, M.I., Shakoor, R.I., Cheung, R.: A soft multi-axis high force range magnetic tactile sensor for force feedback in robotic surgical systems. Sensors 22(9), 3500 (2022)

    Article  Google Scholar 

  16. Roberts, P., Zadan, M., Majidi, C.: Soft tactile sensing skins for robotics. Curr. Robot. Rep. 2, 343–354 (2021)

    Article  MATH  Google Scholar 

  17. for Robots, I.P.: Calculation of gripping force. https://en.iprworldwide.com/calculation-of-gripping-force/. Accessed 20 May 2022

  18. Sferrazza, C., D’Andrea, R.: Design, motivation and evaluation of a full-resolution optical tactile sensor. Sensors 19(4), 928 (2019)

    Article  MATH  Google Scholar 

  19. Song, K., et al.: Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci. Rep. 9(1), 8988 (2019)

    Article  MATH  Google Scholar 

  20. Visentin, F., Castellini, F., Muradore, R.: A soft, sensorized gripper for delicate harvesting of small fruits. Comput. Electron. Agric. 213, 108202 (2023)

    Article  Google Scholar 

  21. Vishnu, R.S., Parsons, S.E.A.G.: Single and bi-layered 2-d acoustic soft tactile skin. In: 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), pp. 133–138 (2024). https://doi.org/10.1109/RoboSoft60065.2024.10522056

  22. Wall, V., Zöller, G., Brock, O.: Passive and active acoustic sensing for soft pneumatic actuators. Int. J. Robot. Res. 42(3), 108–122 (2023)

    Article  MATH  Google Scholar 

  23. Wang, C., et al.: Tactile sensing technology in bionic skin: a review. Biosens. Bioelectron. 220, 114882 (2023)

    Article  MATH  Google Scholar 

  24. Ward-Cherrier, B., et al.: The tactip family: soft optical tactile sensors with 3d-printed biomimetic morphologies. Soft Rob. 5(2), 216–227 (2018)

    Article  MATH  Google Scholar 

  25. Wei, Y., Xu, Q.: An overview of micro-force sensing techniques. Sens. Actuators A 234, 359–374 (2015)

    Article  MATH  Google Scholar 

  26. Wu, H., Zheng, B., Wang, H., Ye, J.: New flexible tactile sensor based on electrical impedance tomography. Micromachines 13(2), 185 (2022)

    Article  MATH  Google Scholar 

  27. Zimmer, J., Hellebrekers, T., Asfour, T., Majidi, C., Kroemer, O.: Predicting grasp success with a soft sensing skin and shape-memory actuated gripper. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7120–7127. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vishnu Rajendran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajendran, S.V., Nazari, K., Parsons, S., Ghalamzan, E.A. (2025). Enabling Tactile Feedback for Robotic Strawberry Handling Using AST Skin. In: Huda, M.N., Wang, M., Kalganova, T. (eds) Towards Autonomous Robotic Systems. TAROS 2024. Lecture Notes in Computer Science(), vol 15051. Springer, Cham. https://doi.org/10.1007/978-3-031-72059-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72059-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72058-1

  • Online ISBN: 978-3-031-72059-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics