Skip to main content

Control Strategies Using the Extended Cooperative Dual Task-Space

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2024)

Abstract

An existing extension of the Cooperative Task Space is reformulated in the dual quaternion domain to form the Extended Cooperative Dual Task Space (ECDTS).This representation allows for the description of both uncoordinated and coordinated cooperative manipulation tasks into a unified formulation free of representational singularities. Additionally, a general framework is proposed to describe cooperative manipulation tasks considering the required manipulation mode in the ECDTS, the desired control objective, and additional task constraints. Vector Field Inequalities (VFIs) and geometric primitives such as Plücker lines and planes are used to define such constraints. Simulations of a task from each manipulation mode are carried out and show the generality of the proposed framework and applicability of the ECDTS formulation.

This project was funded by EPSRC through the CRADLE programme (EP/X02489X/1)and by the Royal Academy of Engineering under the Research Chairs and Senior Research Fellowships programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.coppeliarobotics.com/coppeliaSim.

References

  1. Adorno, B.V.: Two-arm Manipulation: from manipulators to enhanced human-robot collaboration. Theses, Université Montpellier II - Sciences et Techniques du Languedoc, October 2011. https://theses.hal.science/tel-00641678

  2. Adorno, B.V.: Robot Kinematic Modeling and Control Based on Dual Quaternion Algebra—Part I: Fundamentals (2017). https://hal.science/hal-01478225v1

  3. Adorno, B.V., Fraisse, P., Druon, S.: Dual position control strategies using the cooperative dual task-space framework. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, pp. 3955–3960 (2010)

    Google Scholar 

  4. Adorno, B.V., Marinho, M.M.: DQ robotics: a library for robot modeling and control. IEEE Rob. Autom. Mag. 28(3), 102–116 (2021)

    Article  MATH  Google Scholar 

  5. Caccavale, F.: Cooperative manipulators. In: Baillieul, J., Samad, T. (eds.) Encyclopedia of Systems and Control, pp. 450–455. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-44184-5_175

  6. Chiacchio, P., Chiaverini, S., Siciliano, B.: Direct and inverse kinematics for coordinated motion tasks of a two-manipulator system. J. Dyn. Syst. Measur. Control 118(4), 691–697 (1996). https://doi.org/10.1115/1.2802344

  7. de Farias, C.M., Rocha, Y.G., Figueredo, L.F.C., Bernardes, M.C.: Design of singularity-robust and task-priority primitive controllers for cooperative manipulation using dual quaternion representation. In: 2017 IEEE Conference on Control Technology and Applications (CCTA), pp. 740–745 (2017)

    Google Scholar 

  8. Krebs, F., Asfour, T.: A bimanual manipulation taxonomy. IEEE Rob. Autom. Lett. 7(4), 11031–11038 (2022)

    Article  MATH  Google Scholar 

  9. Marinho, M.M., Adorno, B.V., Harada, K., Mitsuishi, M.: Dynamic active constraints for surgical robots using vector-field inequalities. IEEE Trans. Rob. 35, 1166–1185 (2019)

    Google Scholar 

  10. Park, H.A., Lee, C.S.: Extended cooperative task space for manipulation tasks of humanoid robots. In: Proceedings - IEEE International Conference on Robotics and Automation, 2015-June, pp. 6088–6093 (2015)

    Google Scholar 

  11. Paulius, D., Huang, Y., Meloncon, J., Sun, Y.: Manipulation motion taxonomy and coding for robots. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, November 2019

    Google Scholar 

  12. Pereira, M.S., Adorno, B.V.: Manipulation task planning and motion control using task relaxations. J. Control Autom. Electric. Syst. 33, 1103–1115 (2022)

    Article  MATH  Google Scholar 

  13. Quiroz-Omaña, J.J., Adorno, B.V.: Bimanual mobile manipulation using the cooperative dual task-space framework and vector fields inequalities. In: Workshop on Applications of Dual Quaternion Algebra to Robotics, pp. 1–2 (2019). https://doi.org/10.5281/ZENODO.3566806

  14. Quiroz-Omaña, J.J., Adorno, B.V.: Whole-body control with (self) collision avoidance using vector field inequalities. IEEE Rob. Autom. Lett. 4(4), 4048–4053 (2019)

    Article  MATH  Google Scholar 

  15. Smith, C., et al.: Dual arm manipulation-a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyonne Leslie-Dalley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leslie-Dalley, S., Adorno, B.V., Groves, K. (2025). Control Strategies Using the Extended Cooperative Dual Task-Space. In: Huda, M.N., Wang, M., Kalganova, T. (eds) Towards Autonomous Robotic Systems. TAROS 2024. Lecture Notes in Computer Science(), vol 15052. Springer, Cham. https://doi.org/10.1007/978-3-031-72062-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72062-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72061-1

  • Online ISBN: 978-3-031-72062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics