Skip to main content

Bio-Inspired Soft Pneumatic Gripper for Agriculture Harvesting

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2024)

Abstract

For agricultural harvesting, handling fruits and vegetables are important processes which need a flexible but firm grip with dexterity. Due to the existing limitations of standard traditional grippers, a diverse range of soft grippers has been developed utilising elastomer, silicon, flexible plastic material etc. The manufacturing process includes mainly moulding or 3D printing and is actuated by pneumatic/ hydraulic drives, tendon drives or electrical signals. Still, there is a gap in the current market of soft grippers in terms of creating the required holding force with flexibility and bending to handle delicate foods. To overcome these existing limitations, a bio-inspired soft gripper is developed from 3D printing using Ninjaflex material. The proposed pneumatic controlled gripper is integrated with a hair-like fine structure and DIP-inspired feature to provide better grip to surfaces along with electrostatic attraction and suction. A comprehensive FEA simulation has been performed on material selection to find lower stress, longer lifespan, and higher bending capacity. Three basic tests are conducted to evaluate its performance: static friction, block force and radius of curvature. Besides, a simple grasping experiment is also conducted for holding tomatoes and coffee cups. Considering these results, the developed gripper has the potential to be acceptable in the current agricultural industry for handling objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WWF-UK.: Hidden waste: The scale and impact of food waste in primary production. WWF (2022). https://www.wwf.org.uk/our-reports/hidden-waste

  2. Rose, D.C., Bhattacharya, M.: Adoption of autonomous robots in the soft fruit sector: grower perspectives in the UK. Smart Agric. Technol. 3, 100118 (2023)

    Article  MATH  Google Scholar 

  3. Nasini, L., Proietti, P.: Olive harvesting. The Extra‐Virgin Olive Oil Handbook, pp. 87–105. John Wiley & Sons, Hoboken (2014)

    Google Scholar 

  4. Dimeas, F., Sako, D.V., Moulianitis, V.C., Aspragathos, N.A.: Design and fuzzy control of a robotic gripper for efficient strawberry harvesting. Robotica 33(5), 1085–1098 (2015)

    Article  Google Scholar 

  5. Muscato, G., Prestifilippo, M., Abbate, N., Rizzuto, I.: A prototype of an orange picking robot: past history, the new robot and experimental results. Ind. Rob. Int. J. 32(2), 128–138 (2005)

    Article  Google Scholar 

  6. Birglen, L., Schlicht, T.: A statistical review of industrial robotic grippers. Rob. Comput.-Integrat. Manuf. 49, 88–97 (2018)

    Article  MATH  Google Scholar 

  7. Mazzolai, B., et al.: Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunct. Mater. 5(3), 032001 (2022)

    Article  MATH  Google Scholar 

  8. Polygerinos, P., et al.: Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 19(12), 1700016 (2017)

    Article  Google Scholar 

  9. Hayashi, S., et al.: Evaluation of a strawberry-harvesting robot in a field test. Biosys. Eng. 105(2), 160–171 (2010)

    Article  MATH  Google Scholar 

  10. Yaguchi, H., Nagahama, K., Hasegawa, T., Inaba, M.: Development of an autonomous tomato harvesting robot with rotational plucking gripper. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 652–657. IEEE, Daejeon (2016)

    Google Scholar 

  11. Birrell, S., Hughes, J., Cai, J.Y., Iida, F.: A field-tested robotic harvesting system for iceberg lettuce. J. Field Rob. 37(2), 225–245 (2020)

    Article  Google Scholar 

  12. Galley, A., Knopf, G.K., Kashkoush, M.: Pneumatic hyperelastic actuators for grasping curved organic objects. Actuators 8(4), 76 (2019)

    Article  Google Scholar 

  13. Gafer, A., Heymans, D., Prattichizzo, D., Salvietti, G.: The quad-spatula gripper: a novel soft-rigid gripper for food handling. In: 2020 3rd IEEE International Conference on Soft Robotics, pp. 39–45. IEEE, New Haven (2020)

    Google Scholar 

  14. Wang, Z., Or, K., Hirai, S.: A dual-mode soft gripper for food packaging. Robot. Auton. Syst. 125, 103427 (2020)

    Article  MATH  Google Scholar 

  15. Lee, J.H., Chung, Y.S., Rodrigue, H.: Long shape memory alloy tendon-based soft robotic actuators and implementation as a soft gripper. Sci. Rep. 9(1), 11251 (2019)

    Article  Google Scholar 

  16. Hu, W., Mutlu, R., Li, W., Alici, G.: A structural optimisation method for a soft pneumatic actuator. Robotics 7(2), 24 (2018)

    Article  MATH  Google Scholar 

  17. Hegde, C., Su, J., Tan, J.M.R., He, K., Chen, X., Magdassi, S.: Sensing in soft robotics. ACS Nano 17(16), 15277–15307 (2023)

    Article  Google Scholar 

  18. Walker, J., et al.: Soft robotics: A review of recent developments of pneumatic soft actuators. Actuators 9(1), 3 (2020)

    Article  MATH  Google Scholar 

  19. Youn, J.H., et al.: Dielectric elastomer actuator for soft robotics applications and challenges. Appl. Sci. 10(2), 640 (2020)

    Article  MATH  Google Scholar 

  20. Plante, J.S., Dubowsky, S.: On the performance mechanisms of dielectric elastomer actuators. Sens. Actu. A 137(1), 96–109 (2007)

    Article  MATH  Google Scholar 

  21. Tawk, C., Gillett, A., in het Panhuis, M., Spinks, G. M., Alici, G.: A 3D-printed omni-purpose soft gripper. IEEE Trans. Rob. 35(5), 1268–1275 (2019)

    Google Scholar 

  22. Venter, D., Dirven, S.: Self morphing soft-robotic gripper for handling and manipulation of delicate produce in horticultural applications. In: 24th International Conference on Mechatronics and Machine Vision in Practice, pp. 1–6. IEEE, Auckland (2017)

    Google Scholar 

  23. Yirmibeşoğlu, O.D., Oshiro, T., Olson, G., Palmer, C., Mengüç, Y.: Evaluation of 3D printed soft robots in radiation environments and comparison with molded counterparts. Front. Rob. AI 6, 40 (2019)

    Article  Google Scholar 

  24. Ranasinghe, H.N., Kawshan, C., Himaruwan, S., Kulasekera, A.L., Dassanayake, P.: Soft pneumatic grippers for reducing fruit damage during strawberry harvesting. In: 2022 Moratuwa Engineering Research Conference, pp. 1–6. IEEE, Moratuwa (2022)

    Google Scholar 

  25. Alici, G., Canty, T., Mutlu, R., Hu, W., Sencadas, V.: Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers. Soft Rob. 5(1), 24–35 (2018)

    Article  Google Scholar 

  26. Jahanbakhshi, A., Rasooli Sharabiani, V., Heidarbeigi, K., Kaveh, M., Taghinezhad, E.: Evaluation of engineering properties for waste control of tomato during harvesting and postharvesting. Food Sci. Nutr. 7(4), 1473–1481 (2019)

    Article  Google Scholar 

  27. Rasmussen, M.H., et al.: Evidence that gecko setae are coated with an ordered nanometre-thin lipid film. Biol. Let. 18(7), 20220093 (2022)

    Article  Google Scholar 

  28. Stojiljković, D., et al.: Simulation, analysis, and experimentation of the compliant finger as a part of hand-compliant mechanism development. Appl. Sci. 13(4), 2490 (2023)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya K. Manna .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests.

The authors acknowledge no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clark, A. et al. (2025). Bio-Inspired Soft Pneumatic Gripper for Agriculture Harvesting. In: Huda, M.N., Wang, M., Kalganova, T. (eds) Towards Autonomous Robotic Systems. TAROS 2024. Lecture Notes in Computer Science(), vol 15052. Springer, Cham. https://doi.org/10.1007/978-3-031-72062-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72062-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72061-1

  • Online ISBN: 978-3-031-72062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics