Skip to main content

Affinity Learning Based Brain Function Representation for Disease Diagnosis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) serves as a potent means to quantify brain functional connectivity (FC), which holds potential in diagnosing diseases. However, conventional FC measures may fall short in encapsulating the intricate functional dynamics of the brain; for instance, FC computed via Pearson correlation merely captures linear statistical dependencies among signals from different brain regions. In this study, we propose an affinity learning framework for modeling FC, leveraging a pre-training model to discern informative function representation among brain regions. Specifically, we employ randomly sampled patches and encode them to generate region embeddings, which are subsequently utilized by the proposed affinity learning module to deduce function representation between any pair of regions via an affinity encoder and a signal reconstruction decoder. Moreover, we integrate supervision from large language model (LLM) to incorporate prior brain function knowledge. We evaluate the efficacy of our framework across two datasets. The results from downstream brain disease diagnosis tasks underscore the effectiveness and generalizability of the acquired function representation. In summary, our approach furnishes a novel perspective on brain function representation in connectomics. Our code is available at https://github.com/mjliu2020/ALBFR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alshami, A., Elsayed, M., Ali, E., Eltoukhy, A.E., Zayed, T.: Harnessing the power of chatgpt for automating systematic review process: Methodology, case study, limitations, and future directions. Systems 11(7), 351 (2023)

    Article  Google Scholar 

  2. Bijsterbosch, J., Smith, S.M., Beckmann, C.: An introduction to resting state fMRI functional connectivity. Oxford University Press (2017)

    Google Scholar 

  3. Chen, D., Liu, M., Shen, Z., Zhao, X., Wang, Q., Zhang, L.: Learnable subdivision graph neural network for functional brain network analysis and interpretable cognitive disorder diagnosis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 56–66. Springer (2023)

    Google Scholar 

  4. Chen, D., Zhang, L.: Fe-stgnn: Spatio-temporal graph neural network with functional and effective connectivity fusion for mci diagnosis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 67–76. Springer (2023)

    Google Scholar 

  5. Cui, H., Dai, W., Zhu, Y., Kan, X., Gu, A.A.C., Lukemire, J., Zhan, L., He, L., Guo, Y., Yang, C.: Braingb: A benchmark for brain network analysis with graph neural networks. IEEE Transactions on Medical Imaging 42(2), 493–506 (2022)

    Article  Google Scholar 

  6. Fox, M.D., Greicius, M.: Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience 4, 1443 (2010)

    Google Scholar 

  7. Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E., Zwicker, J.G., Hamarneh, G.: Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)

    Article  Google Scholar 

  8. Khosla, M., Jamison, K., Ngo, G.H., Kuceyeski, A., Sabuncu, M.R.: Machine learning in resting-state fmri analysis. Magnetic Resonance Imaging 64, 101–121 (2019)

    Article  Google Scholar 

  9. Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D., Staib, L.H., Ventola, P., Duncan, J.S.: Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis 74, 102233 (2021)

    Article  Google Scholar 

  10. Liu, M., Zhang, H., Liu, M., Chen, D., Zhuang, Z., Wang, X., Zhang, L., Peng, D., Wang, Q.: Randomizing human brain function representation for brain disease diagnosis. IEEE Transactions on Medical Imaging 43(7), 2537–2546 (2024)

    Article  Google Scholar 

  11. Mahmood, U., Fu, Z., Calhoun, V.D., Plis, S.: A deep learning model for data-driven discovery of functional connectivity. Algorithms 14(3), 75 (2021)

    Article  MathSciNet  Google Scholar 

  12. Mohanty, R., Sethares, W.A., Nair, V.A., Prabhakaran, V.: Rethinking measures of functional connectivity via feature extraction. Scientific Reports 10(1), 1298 (2020)

    Article  Google Scholar 

  13. Nunes, A.S., Peatfield, N., Vakorin, V., Doesburg, S.M.: Idiosyncratic organization of cortical networks in autism spectrum disorder. Neuroimage 190, 182–190 (2019)

    Article  Google Scholar 

  14. Padmanabhan, A., Lynch, C.J., Schaer, M., Menon, V.: The default mode network in autism. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 2(6), 476–486 (2017)

    Google Scholar 

  15. Salas, J.A., Bayrak, R.G., Huo, Y., Chang, C.: Reconstruction of respiratory variation signals from fmri data. Neuroimage 225, 117459 (2021)

    Article  Google Scholar 

  16. Vigneau-Roy, N., Bernier, M., Descoteaux, M., Whittingstall, K.: Regional variations in vascular density correlate with resting-state and task-evoked blood oxygen level-dependent signal amplitude. Human Brain Mapping 35(5), 1906–1920 (2014)

    Article  Google Scholar 

  17. Wang, Z., Jie, B., Feng, C., Wang, T., Bian, W., Ding, X., Zhou, W., Liu, M.: Distribution-guided network thresholding for functional connectivity analysis in fmri-based brain disorder identification. IEEE Journal of Biomedical and Health Informatics 26(4), 1602–1613 (2021)

    Article  Google Scholar 

  18. Yan, C., Zang, Y.: Dparsf: a matlab toolbox for" pipeline" data analysis of resting-state fmri. Frontiers in Systems Neuroscience 4, 1377 (2010)

    Google Scholar 

  19. Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology (2011)

    Google Scholar 

  20. Zhang, J., Zhou, L., Wang, L., Liu, M., Shen, D.: Diffusion kernel attention network for brain disorder classification. IEEE Transactions on Medical Imaging 41(10), 2814–2827 (2022)

    Article  Google Scholar 

  21. Zhang, P., Wen, G., Cao, P., Yang, J., Zhang, J., Zhang, X., Zhu, X., Zaiane, O.R., Wang, F.: Brainusl: Unsupervised graph structure learning for functional brain network analysis. In: International Conference on Medical Image Computing and Computer Assisted Intervention. pp. 205–214. Springer (2023)

    Google Scholar 

  22. Zhao, K., Fonzo, G.A., Xie, H., Oathes, D.J., Keller, C.J., Carlisle, N.B., Etkin, A., Garza-Villarreal, E.A., Zhang, Y.: Discriminative functional connectivity signature of cocaine use disorder links to rtms treatment response. Nature Mental Health pp. 1–13 (2024)

    Google Scholar 

  23. Zhao, L., Wu, Z., Dai, H., Liu, Z., Hu, X., Zhang, T., Zhu, D., Liu, T.: A generic framework for embedding human brain function with temporally correlated autoencoder. Medical Image Analysis 89, 102892 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (62131015, 62471288) and Shanghai Municipal Central Guided Local Science and Technology Development Fund (YDZX20233100001001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lichi Zhang or Qian Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1559 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, M. et al. (2024). Affinity Learning Based Brain Function Representation for Disease Diagnosis. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics