Skip to main content

MARVEL: MR Fingerprinting with Additional micRoVascular Estimates Using Bidirectional LSTMs

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

The Magnetic Resonance Fingerprinting (MRF) approach aims to estimate multiple MR or physiological parameters simultaneously with a single fast acquisition sequence. Most of the MRF studies proposed so far have used simple MR sequence types to measure relaxation times (\(T_1\), \(T_2\)). In that case, deep learning algorithms have been successfully used to speed up the reconstruction process. In theory, the MRF concept could be used with a variety of other MR sequence types and should be able to provide more information about the tissue microstructures. Yet, increasing the complexity of the numerical models often leads to prohibited simulation times, and estimating multiple parameters from one sequence implies new dictionary dimensions whose sizes become too large for standard computers and DL architectures. In this paper, we propose to analyze the MRF signal coming from a complex balanced Steady-State Free Precession (bSSFP) type sequence to simultaneously estimate relaxometry maps (\(T_1\), \(T_2\)), Field maps (\(B_1\), \(B_0\)) as well as microvascular properties such as the local Cerebral Blood Volume (CBV) or the averaged vessel Radius (R). To bypass the curse of dimensionality, we propose an efficient way to simulate the MR signal coming from numerical voxels containing realistic microvascular networks as well as a Bidirectional Long Short-Term Memory network that replaces the matching process. On top of standard MRF maps, our results on 3 human volunteers suggest that our approach can quickly produce high-quality quantitative maps of microvascular parameters that are otherwise obtained using longer dedicated sequences and intravenous injection of a contrast agent. This approach could be used for the management of multiple pathologies and could be tuned to provide other types of microstructural information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For those networks, we replaced the bidirectional layer of our network by a unidirectional LSTM. The direction of input signals was inverted for the Reversed LSTM.

  2. 2.

    CBV and R values from the literature were obtained using contrast agent injection.

References

  1. Barbieri, M., Brizi, L., Giampieri, E., Solera, F., Manners, D.N., Castellani, G., Testa, C., Remondini, D.: A deep learning approach for magnetic resonance fingerprinting: Scaling capabilities and good training practices investigated by simulations. Physica Medica 89, 80–92 (2021). https://doi.org/10.1016/j.ejmp.2021.07.013

    Article  Google Scholar 

  2. Cabini, R.F., Barzaghi, L., Cicolari, D., Arosio, P., Carrazza, S., Figini, S., Filibian, M., Gazzano, A., Krause, R., Mariani, M., Peviani, M., Pichiecchio, A., Pizzagalli, D.U., Lascialfari, A.: Fast Deep Learning Reconstruction Techniques for Preclinical Magnetic Resonance Fingerprinting. NMR in Biomedicine 37(1), e5028 (2024).https://doi.org/10.1002/nbm.5028

    Article  Google Scholar 

  3. Cauley, S.F., Setsompop, K., Ma, D., Jiang, Y., Ye, H., Adalsteinsson, E., Griswold, M.A., Wald, L.L.: Fast Group Matching for MR Fingerprinting Reconstruction. Magnetic Resonance in Medicine 74(2), 523–528 (2015https://doi.org/10.1002/mrm.25439

    Article  Google Scholar 

  4. Cohen, O., Zhu, B., Rosen, M.S.: MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magnetic Resonance in Medicine 80(3), 885–894 (2018)https://doi.org/10.1002/mrm.27198

    Article  Google Scholar 

  5. Delphin, A., Boux, F., Brossard, C., Coudert, T., Warnking, J.M., Lemasson, B., Barbier, E.L., Christen, T.: Enhancing MR Vascular Fingerprinting through Realistic Microvascular Geometries (2024), https://hal.science/hal-04107446, preprint

  6. Fang, Z., Chen, Y., Lin, W., Shen, D.: Quantification of Relaxation Times in MR Fingerprinting using Deep Learning. Proceedings of the International Society for Magnetic Resonance in Medicine ... Scientific Meeting and Exhibition. International Society for Magnetic Resonance in Medicine. Scientific Meeting and Exhibition 25,  3307 (2017)

    Google Scholar 

  7. Gelman, N., Ewing, J.R., Gorell, J.M., Spickler, E.M., Solomon, E.G.: Interregional Variation of Longitudinal Relaxation Rates in Human Brain at 3.0 T: Relation to Estimated Iron and Water Contents. Magnetic Resonance in Medicine 45(1), 71–79 (2001).https://doi.org/10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2

  8. Golbabaee, M., Buonincontri, G., Pirkl, C.M., Menzel, M.I., Menze, B.H., Davies, M., Gómez, P.A.: Compressive MRI Quantification using Convex Spatiotemporal Priors and Deep Encoder-Decoder Networks. Medical Image Analysis 69, 101945 (2021).https://doi.org/10.1016/j.media.2020.101945

    Article  Google Scholar 

  9. Graves, A., Schmidhuber, J.: Framewise Phoneme Classification with Bidirectional LSTM and other Neural Network Architectures. Neural Networks 18(5), 602–610 (2005).https://doi.org/10.1016/j.neunet.2005.06.042

    Article  Google Scholar 

  10. Gómez, P., Molina-Romero, M., Buonincontri, G., Menzel, M., Menze, B.: Designing Contrasts for Rapid, Simultaneous Parameter Quantification and Flow Visualization with Quantitative Transient-State Imaging. Scientific Reports 9(1),  8468 (2019)https://doi.org/10.1038/s41598-019-44832-w

    Article  Google Scholar 

  11. Hargreaves, B.: Bloch Equation Simulator, http://www-mrsrl.stanford.edu/~brian/blochsim/

  12. Hasan, K.M., Walimuni, I.S., Kramer, L.A., Narayana, P.A.: Human Brain Iron Mapping using Atlas-Based \(t_2\) Relaxometry. Magnetic Resonance in Medicine 67(3), 731–739 (2012) https://doi.org/10.1002/mrm.23054

    Article  Google Scholar 

  13. Hoppe, E., Körzdörfer, G., Nittka, M., Wür, T., Wetzl, J., Lugauer, F., Schneider, M., Pfeu, J., Maier, A.: Deep Learning for Magnetic Resonance Fingerprinting: Accelerating the Reconstruction of Quantitative Relaxation Maps. Studies in Health Technology and Informatics 243, 202–206 (2018)

    Google Scholar 

  14. Hoppe, E., Thamm, F., Körzdörfer, G., Syben, C., Schirrmacher, F., Nittka, M., Pfeuffer, J., Meyer, H., Maier, A.: RinQ Fingerprinting: Recurrence-Informed Quantile Networks for Magnetic Resonance Fingerprinting. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. vol. 11766, pp. 92–100. Springer International Publishing (2019) https://doi.org/10.1007/978-3-030-32248-9_11

  15. Ito, H., Kanno, I., Kato, C., Sasaki, T., Ishii, K., Ouchi, Y., Iida, A., Okazawa, H., Hayashida, K., Tsuyuguchi, N., Ishii, K., Kuwabara, Y., Senda, M.: Database of Normal Human Cerebral Blood Flow, Cerebral Blood Volume, Cerebral Oxygen Extraction Fraction and Cerebral Metabolic Rate of Oxygen Measured by Positron Emission Tomography with \(^{15}\)O-Labelled Carbon Dioxide or Water, Carbon Monoxide and Oxygen: a Multicentre Study in Japan. European Journal of Nuclear Medicine and Molecular Imaging 31(5), 635–643 (2004) https://doi.org/10.1007/s00259-003-1430-8

    Article  Google Scholar 

  16. Jiang, Y., Ma, D., Seiberlich, N., Gulani, V., Griswold, M.A.: Mr Fingerprinting using Fast Imaging with Steady State Precession (FISP) with Spiral Readout. Magnetic Resonance in Medicine 74(6), 1621–1631 (2015) https://doi.org/10.1002/mrm.25559

    Article  Google Scholar 

  17. Ma, D., Coppo, S., Chen, Y., McGivney, D.F., Jiang, Y., Pahwa, S., Gulani, V., Griswold, M.A.: Slice Profile and \({B}_1\) Corrections in 2D Magnetic Resonance Fingerprinting. Magnetic Resonance in Medicine 78(5), 1781–1789 (2017) https://doi.org/10.1002/mrm.26580

    Article  Google Scholar 

  18. Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J.L., Duerk, J.L., Griswold, M.A.: Magnetic Resonance Fingerprinting. Nature 495(7440), 187–192 (2013) https://doi.org/10.1038/nature11971

    Article  Google Scholar 

  19. McGivney, D., Pierre, E., Ma, D., Jiang, Y., Saybasili, H., Gulani, V., Griswold, M.: SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain. IEEE Transactions on Medical Imaging 33(12), 2311–2322 (2014) https://doi.org/10.1109/TMI.2014.2337321

    Article  Google Scholar 

  20. Scheffler, K., Lehnhardt, S.: Principles and Applications of Balanced SSFP Techniques. European Radiology 13(11), 2409–2418 (2003).https://doi.org/10.1007/s00330-003-1957-x

    Article  Google Scholar 

  21. Siami-Namini, S., Tavakoli, N., Namin, A.S.: The Performance of LSTM and BiLSTM in Forecasting Time Series. In: 2019 IEEE International Conference on Big Data (Big Data). pp. 3285–3292 (2019).https://doi.org/10.1109/BigData47090.2019.9005997

  22. Stikov, N., Boudreau, M., Levesque, I.R., Tardif, C.L., Barral, J.K., Pike, G.B.: On the Accuracy of \({T}_1\) Mapping: Searching for Common Ground. Magnetic Resonance in Medicine 73(2), 514–522 (2015).https://doi.org/10.1002/mrm.25135

    Article  Google Scholar 

  23. Wang, C.Y., Coppo, S., Mehta, B.B., Seiberlich, N., Yu, X., Griswold, M.A.: Magnetic Resonance Fingerprinting with Quadratic RF Phase for Measurement of T\(_{2}^{*}\) Simultaneously with \(\delta _f\), T\(_{1}\), and T\(_{2}\). Magnetic Resonance in Medicine 81(3), 1849–1862 (2019)https://doi.org/10.1002/mrm.27543

  24. Wansapura, J.P., Holland, S.K., Dunn, R.S., Ball, W.S.: NMR Relaxation Times in the Human Brain at 3.0 Tesla. Journal of Magnetic Resonance Imaging 9(4), 531–538 (1999).https://doi.org/10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L

Download references

Acknowledgments

Project supported by the French National Research Agency [ANR-20-CE19-0030 MRFUSE]. We thank the MRI facility IRMaGe partly funded by French program “Investissement d’avenir” run by the French National Research Agency, grant “Infrastructure d’avenir en Biologie et Santé” [ANR-11-INBS-006].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antoine Barrier or Thomas Coudert .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 589 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barrier, A., Coudert, T., Delphin, A., Lemasson, B., Christen, T. (2024). MARVEL: MR Fingerprinting with Additional micRoVascular Estimates Using Bidirectional LSTMs. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics