Skip to main content

MetaAD: Metabolism-Aware Anomaly Detection for Parkinson’s Disease in \(\text {3D}\) \(^\text {18}\)F-FDG PET

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

The dopamine transporter (DAT) imaging such as \(^{11}\)C-CFT PET has shown significant superiority in diagnosing Parkinson’s Disease (PD). However, most hospitals have no access to DAT imaging but instead turn to the commonly used \(^{18}\)F-FDG PET, which may not show major abnormalities of PD at visual analysis and thus hinder the performance of computer-aided diagnosis (CAD). To tackle this challenge, we propose a Metabolism-aware Anomaly Detection (MetaAD) framework to highlight abnormal metabolism cues of PD in \(^{18}\)F-FDG PET scans. MetaAD converts the input FDG image into a synthetic CFT image with healthy patterns, and then reconstructs the FDG image by a reversed modality mapping. The visual differences between the input and reconstructed images serve as indicators of PD metabolic anomalies. A dual-path training scheme is adopted to prompt the generators to learn an explicit normal data distribution via cyclic modality translation while enhancing their abilities to memorize healthy metabolic characteristics. The experiments reveal that MetaAD not only achieves superior performance in visual interpretability and anomaly detection for PD diagnosis, but also shows effectiveness in assisting supervised CAD methods. Our code is available at https://github.com/MedAIerHHL/MetaAD.

H. Huang, Z. Shen, J. Wang–Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: semi-supervised anomaly detection via adversarial training. In: Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14, pp. 622–637. Springer (2019). https://doi.org/10.1007/978-3-030-20893-6_39

  2. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain mr images: a comparative study. Medical Image Analysis 69, 101952 (2021)

    Article  Google Scholar 

  3. Baur, C., Graf, R., Wiestler, B., Albarqouni, S., Navab, N.: SteGANomaly: inhibiting cycleGAN steganography for unsupervised anomaly detection in brain MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 718–727. Springer (2020). https://doi.org/10.1007/978-3-030-59713-9_69

  4. Fernando, T., Gammulle, H., Denman, S., Sridharan, S., Fookes, C.: Deep learning for medical anomaly detection–a survey. ACM Comput. Surv. (CSUR) 54(7), 1–37 (2021)

    Google Scholar 

  5. Golan, H., Volkov, O., Shalom, E.: Nuclear imaging in parkinson’s disease: the past, the present, and the future. J. Neurol. Sci. 436, 120220 (2022)

    Google Scholar 

  6. Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S., Hengel, A.v.d.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks (2019)

    Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  10. Ishibashi, K., Oda, K., Ishiwata, K., Ishii, K.: Comparison of dopamine transporter decline in a patient with Parkinson’s disease and normal aging effect. J. Neurol. Sci. 339(1-2), 207–209 (2014)

    Google Scholar 

  11. Jiang, C., et al.: Characteristics of cerebral glucose metabolism on 18f-FDG PET imaging in patients with Parkinson’s disease. Chin. J. Nucl. Med. Mol. Imaging 193–197 (2017)

    Google Scholar 

  12. Kascenas, A., et al.: The role of noise in denoising models for anomaly detection in medical images. Med. Image Anal. 90, 102963 (2023)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)

    Google Scholar 

  14. Kish, S.J., Shannak, K., Hornykiewicz, O.: Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. New Engl. J. Med. 318(14), 876–880 (1988)

    Google Scholar 

  15. Liang, Z., Anthony, H., Wagner, F., Kamnitsas, K.: Modality cycles with masked conditional diffusion for unsupervised anomaly segmentation in MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 168–181. Springer (2023). https://doi.org/10.1007/978-3-031-47425-5_16

  16. Odekerken, V.J., et al.: Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 12(1), 37–44 (2013)

    Google Scholar 

  17. Pagan, F.L.: Improving outcomes through early diagnosis of Parkinson’s disease. Am. J. Manag. Care 18(7), S176 (2012)

    Google Scholar 

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  19. Peralta, C., et al.: Pragmatic approach on neuroimaging techniques for the differential diagnosis of Parkinsonisms. Mov. Disord. Clin. Pract. 9(1), 6–19 (2022)

    Google Scholar 

  20. Pringsheim, T., Jette, N., Frolkis, A., Steeves, T.D.: The prevalence of parkinson’s disease: a systematic review and meta-analysis. Mov. disord. 29(13), 1583–1590 (2014)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241. Springer (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  22. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anogan: Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Google Scholar 

  23. Shvetsova, N., Bakker, B., Fedulova, I., Schulz, H., Dylov, D.V.: Anomaly detection in medical imaging with deep perceptual autoencoders. IEEE Access 9, 118571–118583 (2021)

    Article  Google Scholar 

  24. Song, T.A., Yang, F., Dutta, J.: Noise2void: unsupervised denoising of pet images. Phys. Med. Biol. 66(21), 214002 (2021)

    Google Scholar 

  25. Wang, J., et al.: Diagnostic performance of artificial intelligence-assisted pet imaging for Parkinson’s disease: a systematic review and meta-analysis. NPJ Digit. Med. 7(1),  17 (2024)

    Google Scholar 

  26. Zhao, Y., et al.: Decoding the dopamine transporter imaging for the differential diagnosis of parkinsonism using deep learning. Eur. J. Nucl. Med. Mol. Imaging 49(8), 2798–2811 (2022)

    Google Scholar 

  27. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by National Natural Science Foundation of China (82394432, 82394434, 82272039, 82021002, 81971641) and STI 2030-Major Projects (2022ZD0211600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuantao Zuo or Qian Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 223 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, H. et al. (2024). MetaAD: Metabolism-Aware Anomaly Detection for Parkinson’s Disease in \(\text {3D}\) \(^\text {18}\)F-FDG PET. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics