Skip to main content

Phy-Diff: Physics-Guided Hourglass Diffusion Model for Diffusion MRI Synthesis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15002))

Abstract

Diffusion MRI (dMRI) is an important neuroimaging technique with high acquisition costs. Deep learning approaches have been used to enhance dMRI and predict diffusion biomarkers through undersampled dMRI. To generate more comprehensive raw dMRI, generative adversarial network based methods are proposed to include b-values and b-vectors as conditions, but they are limited by unstable training and less desirable diversity. The emerging diffusion model (DM) promises to improve generative performance. However, it remains challenging to include essential information in conditioning DM for more relevant generation, i.e., the physical principles of dMRI and white matter tract structures. In this study, we propose a physics-guided diffusion model to generate high-quality dMRI. Our model introduces the physical principles of dMRI in the noise evolution in the diffusion process and introduces a query-based conditional mapping within the diffusion model. In addition, to enhance the anatomical fine details of the generation, we introduce the XTRACT atlas as a prior of white matter tracts by adopting an adapter technique. Our experiment results show that our method outperforms other state-of-the-art methods and has the potential to advance dMRI enhancement.

J. Zhang and R. Yan—Contribute equally in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bau, D., Zhu, J.Y., Wulff, J., Peebles, W., Strobelt, H., Zhou, B., Torralba, A.: Seeing what a gan cannot generate (2019), https://arxiv.org/abs/1910.11626

  2. Berard, H., Gidel, G., Almahairi, A., Vincent, P., Lacoste-Julien, S.: A closer look at the optimization landscapes of generative adversarial networks. arXiv preprint arXiv:1906.04848 (2019)

  3. Chen, G., Jiang, H., Liu, J., Ma, J., Cui, H., Xia, Y., Yap, P.T.: Hybrid Graph Transformer for Tissue Microstructure Estimation with Undersampled Diffusion MRI Data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. pp. 113–122. Lecture Notes in Computer Science, Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_11

  4. Crowson, K., Baumann, S.A., Birch, A., Abraham, T.M., Kaplan, D.Z., Shippole, E.: Scalable high-resolution pixel-space image synthesis with hourglass diffusion transformers (2024), https://arxiv.org/abs/2401.11605

  5. Dhariwal, P., Nichol, A.: Diffusion Models Beat GANs on Image Synthesis (Jun 2021). https://doi.org/10.48550/arXiv.2105.05233, http://arxiv.org/abs/2105.05233, arXiv:2105.05233 [cs, stat]

  6. Essen, D.C.V., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K.: The WU-Minn Human Connectome Project: An overview. NeuroImage 80, 62–79 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.041, https://www.sciencedirect.com/science/article/pii/S1053811913005351

  7. Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1), 313–327 (2011). https://doi.org/10.1016/j.neuroimage.2010.07.033, https://www.sciencedirect.com/science/article/pii/S1053811910010062

  8. Gibbons, E.K., Hodgson, K.K., Chaudhari, A.S., Richards, L.G., Majersik, J.J., Adluru, G., DiBella, E.V.: Simultaneous noddi and gfa parameter map generation from subsampled q-space imaging using deep learning. Magnetic Resonance in Medicine 81(4), 2399–2411 (2019). https://doi.org/10.1002/mrm.27568, https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.27568

  9. Golkov, V., Dosovitskiy, A., Sperl, J.I., Menzel, M.I., Czisch, M., Sämann, P., Brox, T., Cremers, D.: q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans. IEEE Transactions on Medical Imaging 35(5), 1344–1351 ( 2016). https://doi.org/10.1109/TMI.2016.2551324, https://ieeexplore.ieee.org/document/7448418, conference Name: IEEE Transactions on Medical Imaging

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. arXiv:2006.11239 (2020)

  11. Jiang, L., Mao, Y., Chen, X., Wang, X., Li, C.: Cola-diff: Conditional latent diffusion model for multi-modal mri synthesis (2023), https://arxiv.org/abs/2303.14081

  12. Karimi, D., Gholipour, A.: Atlas-powered deep learning (adl) – application to diffusion weighted mri (2022), https://arxiv.org/abs/2205.03210

  13. Le Bihan, D., Johansen-Berg, H.: Diffusion MRI at 25: Exploring brain tissue structure and function. NeuroImage 61(2), 324–341 ( 2012). https://doi.org/10.1016/j.neuroimage.2011.11.006, https://www.sciencedirect.com/science/article/pii/S1053811911012857

  14. Li, C., Wei, Y., Chen, X., Schonlieb, C.B.: Brainnetgan: Data augmentation of brain connectivity using generative adversarial network for dementia classification (2021), https://arxiv.org/abs/2103.08494

  15. Li, H., Yang, Y., Chang, M., Chen, S., Feng, H., Xu, Z., Li, Q., Chen, Y.: Srdiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47–59 (2022)

    Article  Google Scholar 

  16. Liu, P., Li, C., Schönlieb, C.B.: Ganredl: Medical image enhancement using a generative adversarial network with real-order derivative induced loss functions. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.T., Khan, A. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. pp. 110–117. Springer International Publishing, Cham (2019)

    Google Scholar 

  17. Mao, Y., Jiang, L., Chen, X., Li, C.: Disc-diff: Disentangled conditional diffusion model for multi-contrast mri super-resolution (2023), https://arxiv.org/abs/2303.13933

  18. Mou, C., Wang, X., Xie, L., Wu, Y., Zhang, J., Qi, Z., Shan, Y., Qie, X.: T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models (2023), https://arxiv.org/abs/2302.08453

  19. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning. pp. 8162–8171. PMLR (2021)

    Google Scholar 

  20. Ren, M., Kim, H., Dey, N., Gerig, G.: Q-space conditioned translation networks for directional synthesis of diffusion weighted images from multi-modal structural mri (2021), https://arxiv.org/abs/2106.13188

  21. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models (2022), https://arxiv.org/abs/2112.10752

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation (2015), https://arxiv.org/abs/1505.04597

  23. Shazeer, N.: Glu variants improve transformer (2020), https://arxiv.org/abs/2002.05202

  24. Warrington, S., Bryant, K.L., Khrapitchev, A.A., Sallet, J., Charquero-Ballester, M., Douaud, G., Jbabdi, S., Mars, R.B., Sotiropoulos, S.N.: XTRACT - Standardised protocols for automated tractography in the human and macaque brain. NeuroImage 217, 116923 ( 2020). https://doi.org/10.1016/j.neuroimage.2020.116923, https://www.sciencedirect.com/science/article/pii/S1053811920304092

  25. Wei, Y., Chen, X., Zhu, L., Zhang, L., Schönlieb, C.B., Price, S., Li, C.: Multi-modal learning for predicting the genotype of glioma. IEEE Transactions on Medical Imaging 42(11), 3167–3178 (2023)

    Article  Google Scholar 

  26. Wei, Y., Li, C., Price, S.J.: Quantifying structural connectivity in brain tumor patients. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. pp. 519–529. Springer International Publishing, Cham (2021)

    Google Scholar 

  27. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 ( 2012). https://doi.org/10.1016/j.neuroimage.2012.03.072, https://www.sciencedirect.com/science/article/pii/S1053811912003539

  28. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation (2018), https://arxiv.org/abs/1807.10165

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Li .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Yan, R., Perelli, A., Chen, X., Li, C. (2024). Phy-Diff: Physics-Guided Hourglass Diffusion Model for Diffusion MRI Synthesis. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics