Skip to main content

SimBrainNet: Evaluating Brain Network Similarity for Attention Disorders

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Electroencephalography (EEG)-based attention disorder research seeks to understand brain activity patterns associated with attention. Previous studies have mainly focused on identifying brain regions involved in cognitive processes or classifying Attention-Deficit Hyperactivity Disorder (ADHD) and control subjects. However, analyzing effective brain connectivity networks for specific attentional processes and comparing them has not been explored. Therefore, in this study, we propose multivariate transfer entropy-based connectivity networks for cognitive events and introduce a new similarity measure, “SimBrainNet”, to assess these networks. A high similarity score suggests similar brain dynamics during cognitive events, indicating less attention variability. Our experiment involves 12 individuals with attention disorders (7 children and 5 adolescents). Noteworthy that child participants exhibit lower similarity scores compared to adolescents, indicating greater changes in attention. We found strong connectivity patterns in the left pre-frontal cortex for adolescent individuals compared to the child. Our study highlights the changes in attention levels across various cognitive events, offering insights into the underlying cognitive mechanisms, brain dynamics, and potential deficits in individuals with this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://tinyurl.com/4fdszp7x.

References

  1. Alexander, L.M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., Vega-Potler, N., Langer, N., Alexander, A., Kovacs, M., et al.: An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific data 4(1), 1–26 (2017)

    Article  Google Scholar 

  2. Cao, M., Martin, E., Li, X.: Machine learning in attention-deficit/hyperactivity disorder: new approaches toward understanding the neural mechanisms. Translational Psychiatry 13(1),  236 (2023)

    Article  Google Scholar 

  3. Chakladar, D.D., Pal, N.R.: Brain connectivity analysis for EEG-based face perception task. IEEE Transactions on Cognitive and Developmental Systems (2024)

    Google Scholar 

  4. Chakladar, D.D., Roy, P.P., Iwamura, M.: EEG-based cognitive state classification and analysis of brain dynamics using deep ensemble model and graphical brain network. IEEE Transactions on Cognitive and Developmental Systems 14(4), 1507–1519 (2021)

    Article  Google Scholar 

  5. Clarke, A.R., Barry, R.J., Johnstone, S.J., McCarthy, R., Selikowitz, M.: EEG development in attention deficit hyperactivity disorder: From child to adult. Clinical Neurophysiology 130(8), 1256–1262 (2019)

    Article  Google Scholar 

  6. Criaud, M., Wulff, M., Alegria, A., Barker, G., Giampietro, V., Rubia, K.: Increased left inferior fronto-striatal activation during error monitoring after fMRI neurofeedback of right inferior frontal cortex in adolescents with attention deficit hyperactivity disorder. NeuroImage: Clinical 27, 102311 (2020)

    Google Scholar 

  7. Dong, Q., Qiang, N., Lv, J., Li, X., Liu, T., Li, Q.: Spatiotemporal attention autoencoder (STAAE) for ADHD classification. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII 23. pp. 508–517. Springer (2020)

    Google Scholar 

  8. Dubreuil-Vall, L., Ruffini, G., Camprodon, J.A.: Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG. Frontiers in neuroscience 14,  251 (2020)

    Article  Google Scholar 

  9. Gao, Y., Ren, L., Li, R., Zhang, Y.: Electroencephalogram–electromyography coupling analysis in stroke based on symbolic transfer entropy. Frontiers in neurology 8,  716 (2018)

    Google Scholar 

  10. Harmah, D.J., Li, C., Li, F., Liao, Y., Wang, J., Ayedh, W.M., Bore, J.C., Yao, D., Dong, W., Xu, P.: Measuring the non-linear directed information flow in schizophrenia by multivariate transfer entropy. Frontiers in computational neuroscience 13,  85 (2020)

    Article  Google Scholar 

  11. Hong, J., Park, B.y., Cho, H.h., Park, H.: Age-related connectivity differences between attention deficit and hyperactivity disorder patients and typically developing subjects: a resting-state functional MRI study. Neural regeneration research 12(10),  1640 (2017)

    Google Scholar 

  12. Jie, B., Liu, M., Zhang, D., Shen, D.: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis. IEEE Transactions on Image Processing 27(5), 2340–2353 (2018)

    Article  MathSciNet  Google Scholar 

  13. Konrad, K., Eickhoff, S.B.: Is the ADHD brain wired differently? a review on structural and functional connectivity in attention deficit hyperactivity disorder. Human brain mapping 31(6), 904–916 (2010)

    Article  Google Scholar 

  14. Langer, N., Ho, E.J., Alexander, L.M., Xu, H.Y., Jozanovic, R.K., Henin, S., Petroni, A., Cohen, S., Marcelle, E.T., Parra, L.C., et al.: A resource for assessing information processing in the developing brain using EEG and eye tracking. Scientific data 4(1), 1–20 (2017)

    Article  Google Scholar 

  15. Markovska-Simoska, S., Pop-Jordanova, N.: Quantitative in children and adults with attention deficit hyperactivity disorder: comparison of absolute and relative power spectra and theta/beta ratio. Clinical EEG and neuroscience 48(1), 20–32 (2017)

    Article  Google Scholar 

  16. Mheich, A., Hassan, M., Khalil, M., Gripon, V., Dufor, O., Wendling, F.: Siminet: a novel method for quantifying brain network similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(9), 2238–2249 (2017)

    Article  Google Scholar 

  17. Mheich, A., Wendling, F., Hassan, M.: Brain network similarity: methods and applications. Network Neuroscience 4(3), 507–527 (2020)

    Article  Google Scholar 

  18. Montalto, A., Faes, L., Marinazzo, D.: Mute: a matlab toolbox to compare established and novel estimators of the multivariate transfer entropy. PloS one 9(10), e109462 (2014)

    Article  Google Scholar 

  19. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: Fieldtrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational intelligence and neuroscience 2011,  1–9 (2011)

    Article  Google Scholar 

  20. Osmanlıoğlu, Y., Tunç, B., Alappatt, J.A., Parker, D., Kim, J., Shokoufandeh, A., Verma, R.: A graph representation and similarity measure for brain networks with nodal features. In: Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities: Second International Workshop, GRAIL 2018 and First International Workshop, Beyond MIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 2. pp. 14–23. Springer (2018)

    Google Scholar 

  21. Rubia, K.: Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Frontiers in human neuroscience 12,  100 (2018)

    Article  Google Scholar 

  22. Schreiber, T.: Measuring information transfer. Physical review letters 85(2),  461 (2000)

    Article  Google Scholar 

  23. Slater, J., Joober, R., Koborsy, B.L., Mitchell, S., Sahlas, E., Palmer, C.: Can electroencephalography (EEG) identify ADHD subtypes? a systematic review. Neuroscience & Biobehavioral Reviews 139, 104752 (2022)

    Article  Google Scholar 

  24. Vicente, R., Wibral, M., Lindner, M., Pipa, G.: Transfer entropy—a model-free measure of effective connectivity for the neurosciences. Journal of computational neuroscience 30, 45–67 (2011)

    Google Scholar 

  25. Yasumura, A., Omori, M., Fukuda, A., Takahashi, J., Yasumura, Y., Nakagawa, E., Koike, T., Yamashita, Y., Miyajima, T., Koeda, T., et al.: Age-related differences in frontal lobe function in children with ADHD. Brain and Development 41(7), 577–586 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Das Chakladar .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests in the paper as required by the publisher.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das Chakladar, D., Simistira Liwicki, F., Saini, R. (2024). SimBrainNet: Evaluating Brain Network Similarity for Attention Disorders. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics