Skip to main content

Synchronous Image-Label Diffusion with Anisotropic Noise for Stroke Lesion Segmentation on Non-Contrast CT

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15002))

  • 1689 Accesses

Abstract

Automated segmentation of stroke lesions on non-contrast CT (NCCT) images is essential for efficient diagnosis of stroke patients. Although diffusion probabilistic models have shown promising advancements across various fields, their application to medical imaging exposes limitations due to the use of conventional isotropic Gaussian noise. Isotropic Gaussian noise overlooks the structural information and strong voxel dependencies in medical images. In this paper, a novel framework employing synchronous diffusion processes on image-labels is introduced, combined with a sampling strategy for anisotropic noise, to improve stroke lesion segmentation performance on NCCT. Our method acknowledges the significance of anatomical information during diffusion, contrasting with the traditional diffusion processes that assume isotropic Gaussian noise added to voxels independently. By integrating correlations among image voxels within specific anatomical regions into the denoising process, our approach enhances the robustness of neural networks, resulting in improved accuracy in stroke lesion segmentation. The proposed method has been evaluated on two datasets where experimental results demonstrate the capability of the proposed method to accurately segment ischemic infarcts on NCCT images. Furthermore, comparative analysis against state-of-the-art models, including U-net, transformer, and DPM-based segmentation methods, highlights the advantages of our method in terms of segmentation metrics. The code is publicly available at https://github.com/zhangjianhai/SADPM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi, H., Orouskhani, M., Asgari, S., Zadeh, S.S.: Automatic brain ischemic stroke segmentation with deep learning: A review. Neuroscience Informatics p. 100145 (2023)

    Google Scholar 

  2. Amit, T., Nachmani, E., Shaharbany, T., Wolf, L.: Segdiff: Image segmentation with diffusion probabilistic models. arXiv:2112.00390 (2021)

  3. Calandriello, D., Lazaric, A., Valko, M.: Distributed adaptive sampling for kernel matrix approximation. In: Artificial Intelligence and Statistics. pp. 1421–1429. PMLR (2017)

    Google Scholar 

  4. Cavazza, J., Zunino, A., San Biagio, M., Murino, V.: Kernelized covariance for action recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR). pp. 408–413. IEEE (2016)

    Google Scholar 

  5. Choi, J., Lee, J., Shin, C., Kim, S., Kim, H., Yoon, S.: Perception prioritized training of diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11472–11481 (2022)

    Google Scholar 

  6. Croitoru, F.A., Hondru, V., Ionescu, R.T., Shah, M.: Diffusion models in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)

    Google Scholar 

  7. Fidon, L., Aertsen, M., Kofler, F., Bink, A., David, A.L., Deprest, T., Emam, D., Guffens, F., Jakab, A., Kasprian, G., et al.: A dempster-shafer approach to trustworthy ai with application to fetal brain mri segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2024)

    Google Scholar 

  8. Frangakis, A.S., Hegerl, R.: Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. Journal of structural biology 135(3), 239–250 (2001)

    Article  Google Scholar 

  9. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part I. pp. 272–284. Springer (2022)

    Google Scholar 

  10. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., Roth, H.R., Xu, D.: Unetr: Transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision. pp. 574–584 (2022)

    Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems 33, 6840–6851 (2020)

    Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on the riemannian manifold of symmetric positive definite matrices. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 73–80 (2013)

    Google Scholar 

  14. Mazurowski, M.A., Dong, H., Gu, H., Yang, J., Konz, N., Zhang, Y.: Segment anything model for medical image analysis: an experimental study. Medical Image Analysis 89, 102918 (2023)

    Article  Google Scholar 

  15. Myronenko, A.: 3d mri brain tumor segmentation using autoencoder regularization. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4. pp. 311–320. Springer (2019)

    Google Scholar 

  16. Najm, M., Kuang, H., Federico, A., Jogiat, U., Goyal, M., Hill, M.D., Demchuk, A., Menon, B.K., Qiu, W.: Automated brain extraction from head ct and cta images using convex optimization with shape propagation. Computer Methods and Programs in Biomedicine 176,  1–8 (2019)

    Article  Google Scholar 

  17. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning. pp. 8162–8171. PMLR (2021)

    Google Scholar 

  18. Nowinski, W.L.: Usefulness of brain atlases in neuroradiology: Current status and future potential. The Neuroradiology Journal 29(4), 260–268 (2016)

    Article  Google Scholar 

  19. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge university press (2004)

    Google Scholar 

  20. Taha, A.A., Hanbury, A.: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. BMC medical imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

  21. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J., Ng, R.: Fourier features let networks learn high frequency functions in low dimensional domains. Advances in Neural Information Processing Systems 33, 7537–7547 (2020)

    Google Scholar 

  22. Wang, H., Li, X.: Towards generic semi-supervised framework for volumetric medical image segmentation. Advances in Neural Information Processing Systems 36 (2024)

    Google Scholar 

  23. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: A survey. IET Image Processing 16(5), 1243–1267 (2022)

    Article  Google Scholar 

  24. Whang, J., Delbracio, M., Talebi, H., Saharia, C., Dimakis, A.G., Milanfar, P.: Deblurring via stochastic refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 16293–16303 (2022)

    Google Scholar 

  25. Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2. MIT press Cambridge, MA (2006)

    Google Scholar 

  26. Wu, J., Fang, H., Zhang, Y., Yang, Y., Xu, Y.: Medsegdiff: Medical image segmentation with diffusion probabilistic model. arXiv:2211.00611 (2022)

  27. Xing, Z., Ye, T., Yang, Y., Liu, G., Zhu, L.: Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation. arXiv preprint arXiv:2401.13560 (2024)

  28. Yang, R., Yang, Y., Zhou, F., Sun, Q.: Directional diffusion models for graph representation learning. Advances in Neural Information Processing Systems 36 (2024)

    Google Scholar 

  29. You, C., Dai, W., Min, Y., Liu, F., Clifton, D., Zhou, S.K., Staib, L., Duncan, J.: Rethinking semi-supervised medical image segmentation: A variance-reduction perspective. Advances in Neural Information Processing Systems 36 (2024)

    Google Scholar 

  30. Yue, Z., Wang, J., Loy, C.C.: Resshift: Efficient diffusion model for image super-resolution by residual shifting. In: Thirty-seventh Conference on Neural Information Processing Systems (2023)

    Google Scholar 

  31. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. pp. 3–11. Springer (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (2023YFC2410802), the Hubei Provincial Key Research and Development Program (2023BCB007), the High-Performance Computing platform of Huazhong University of Science and Technology and computer power at Wuhan Seekmore Intelligent Imaging Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Qiu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Wan, T., MacDonald, M.E., Menon, B.K., Qiu, W., Ganesh, A. (2024). Synchronous Image-Label Diffusion with Anisotropic Noise for Stroke Lesion Segmentation on Non-Contrast CT. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics