Abstract
The fundamental question in neuroscience is to understand the working mechanism of how anatomical structure supports brain function and how remarkable functional fluctuations emerge ubiquitous behaviors. We formulate this inverse problem in the realm of system identification, where we use a geometric scattering transform (GST) to model the structure-function coupling and a neural Koopman operator to uncover dynamic mechanism of the underlying complex system. First, GST is used to construct a collection of measurements by projecting the proxy signal of brain activity into a neural manifold constrained by the geometry of wiring patterns in the brain. Then, we seek to find a Koopman operator to elucidate the complex relationship between partial observations and behavior outcomes with a relatively simpler linear mapping, which allows us to understand functional dynamics in the cliché of control system. Furthermore, we integrate GST and Koopman operator into an end-to-end deep neural network, yielding an explainable model for brain dynamics with a mathematical guarantee. Through rigorous experiments conducted on the Human Connectome Project-Aging (HCP-A) dataset, our method demonstrates state-of-the-art performance in cognitive task classification, surpassing existing benchmarks. More importantly, our method shows great potential in uncovering novel insights of brain dynamics using machine learning approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelnour, F., Voss, H.U., Raj, A.: Network diffusion accurately models the relationship between structural and functional brain connectivity networks. Neuroimage 90, 335–347 (2014)
Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent koopman autoencoders. In: International Conference on Machine Learning. pp. 475–485. PMLR (2020)
Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)
Bedel, H.A., Sivgin, I., Dalmaz, O., Dar, S.U., Çukur, T.: Bolt: Fused window transformers for fmri time series analysis. Medical Image Analysis 88, 102841 (2023)
Bookheimer, S.Y., Salat, D.H., Terpstra, M., Ances, B.M., Barch, D.M., Buckner, R.L., Burgess, G.C., Curtiss, S.W., Diaz-Santos, M., Elam, J.S., et al.: The lifespan human connectome project in aging: an overview. Neuroimage 185, 335–348 (2019)
Galán, R.F.: On how network architecture determines the dominant patterns of spontaneous neural activity. PloS one 3(5), e2148 (2008)
Gao, F., Wolf, G., Hirn, M.: Geometric scattering for graph data analysis. In: International Conference on Machine Learning. pp. 2122–2131. PMLR (2019)
Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997)
Koopman, B.O.: Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy of Sciences 17(5), 315–318 (1931)
Li, Y., He, H., Wu, J., Katabi, D., Torralba, A.: Learning compositional koopman operators for model-based control. arXiv preprint arXiv:1910.08264 (2019)
Mayer-Kress, G.: Non-linear mechanisms in the brain. Zeitschrift für Naturforschung C 53(7-8), 677–685 (1998)
Nathan Kutz, J., Proctor, J.L., Brunton, S.L.: Applied koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems. Complexity 2018, 1–16 (2018)
Raj, A., Kuceyeski, A., Weiner, M.: A network diffusion model of disease progression in dementia. Neuron 73(6), 1204–1215 (2012)
Rampášek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf, G., Beaini, D.: Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information Processing Systems 35, 14501–14515 (2022)
Shettigar, N., Yang, C.L., Tu, K.C., Suh, C.S.: On the biophysical complexity of brain dynamics: An outlook. Dynamics 2(2), 114–148 (2022). https://doi.org/10.3390/dynamics2020006, https://www.mdpi.com/2673-8716/2/2/6
Smith, J., Johnson, E.: Cognitive control mechanisms in developmental disorders: From robots to humans. Journal of Cognitive Neuroscience 29(4), 567–580 (2017)
Sporns, O.: The complex brain: Connectivity, dynamics, information. Trends in Cognitive Sciences 26(12), 1066–1067 (2022)
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1), 273–289 (2002)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the koopman operator: Extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015). https://doi.org/10.1007/S00332-015-9258-5, https://doi.org/10.1007/s00332-015-9258-5
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)
Yeung, E., Kundu, S., Hodas, N.: Learning deep neural network representations for koopman operators of nonlinear dynamical systems. In: 2019 American Control Conference (ACC). pp. 4832–4839. IEEE (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chow, C., Dan, T., Styner, M., Wu, G. (2024). Understanding Brain Dynamics Through Neural Koopman Operator with Structure-Function Coupling. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_48
Download citation
DOI: https://doi.org/10.1007/978-3-031-72069-7_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72068-0
Online ISBN: 978-3-031-72069-7
eBook Packages: Computer ScienceComputer Science (R0)