Skip to main content

Understanding Brain Dynamics Through Neural Koopman Operator with Structure-Function Coupling

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15002))

  • 2002 Accesses

Abstract

The fundamental question in neuroscience is to understand the working mechanism of how anatomical structure supports brain function and how remarkable functional fluctuations emerge ubiquitous behaviors. We formulate this inverse problem in the realm of system identification, where we use a geometric scattering transform (GST) to model the structure-function coupling and a neural Koopman operator to uncover dynamic mechanism of the underlying complex system. First, GST is used to construct a collection of measurements by projecting the proxy signal of brain activity into a neural manifold constrained by the geometry of wiring patterns in the brain. Then, we seek to find a Koopman operator to elucidate the complex relationship between partial observations and behavior outcomes with a relatively simpler linear mapping, which allows us to understand functional dynamics in the cliché of control system. Furthermore, we integrate GST and Koopman operator into an end-to-end deep neural network, yielding an explainable model for brain dynamics with a mathematical guarantee. Through rigorous experiments conducted on the Human Connectome Project-Aging (HCP-A) dataset, our method demonstrates state-of-the-art performance in cognitive task classification, surpassing existing benchmarks. More importantly, our method shows great potential in uncovering novel insights of brain dynamics using machine learning approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelnour, F., Voss, H.U., Raj, A.: Network diffusion accurately models the relationship between structural and functional brain connectivity networks. Neuroimage 90, 335–347 (2014)

    Article  Google Scholar 

  2. Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent koopman autoencoders. In: International Conference on Machine Learning. pp. 475–485. PMLR (2020)

    Google Scholar 

  3. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  4. Bedel, H.A., Sivgin, I., Dalmaz, O., Dar, S.U., Çukur, T.: Bolt: Fused window transformers for fmri time series analysis. Medical Image Analysis 88, 102841 (2023)

    Article  Google Scholar 

  5. Bookheimer, S.Y., Salat, D.H., Terpstra, M., Ances, B.M., Barch, D.M., Buckner, R.L., Burgess, G.C., Curtiss, S.W., Diaz-Santos, M., Elam, J.S., et al.: The lifespan human connectome project in aging: an overview. Neuroimage 185, 335–348 (2019)

    Article  Google Scholar 

  6. Galán, R.F.: On how network architecture determines the dominant patterns of spontaneous neural activity. PloS one 3(5), e2148 (2008)

    Article  Google Scholar 

  7. Gao, F., Wolf, G., Hirn, M.: Geometric scattering for graph data analysis. In: International Conference on Machine Learning. pp. 2122–2131. PMLR (2019)

    Google Scholar 

  8. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Koopman, B.O.: Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy of Sciences 17(5), 315–318 (1931)

    Article  Google Scholar 

  11. Li, Y., He, H., Wu, J., Katabi, D., Torralba, A.: Learning compositional koopman operators for model-based control. arXiv preprint arXiv:1910.08264 (2019)

  12. Mayer-Kress, G.: Non-linear mechanisms in the brain. Zeitschrift für Naturforschung C 53(7-8), 677–685 (1998)

    Article  Google Scholar 

  13. Nathan Kutz, J., Proctor, J.L., Brunton, S.L.: Applied koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems. Complexity 2018, 1–16 (2018)

    Article  Google Scholar 

  14. Raj, A., Kuceyeski, A., Weiner, M.: A network diffusion model of disease progression in dementia. Neuron 73(6), 1204–1215 (2012)

    Article  Google Scholar 

  15. Rampášek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf, G., Beaini, D.: Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information Processing Systems 35, 14501–14515 (2022)

    Google Scholar 

  16. Shettigar, N., Yang, C.L., Tu, K.C., Suh, C.S.: On the biophysical complexity of brain dynamics: An outlook. Dynamics 2(2), 114–148 (2022). https://doi.org/10.3390/dynamics2020006, https://www.mdpi.com/2673-8716/2/2/6

  17. Smith, J., Johnson, E.: Cognitive control mechanisms in developmental disorders: From robots to humans. Journal of Cognitive Neuroscience 29(4), 567–580 (2017)

    Google Scholar 

  18. Sporns, O.: The complex brain: Connectivity, dynamics, information. Trends in Cognitive Sciences 26(12), 1066–1067 (2022)

    Article  Google Scholar 

  19. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  21. Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the koopman operator: Extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015). https://doi.org/10.1007/S00332-015-9258-5, https://doi.org/10.1007/s00332-015-9258-5

  22. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  23. Yeung, E., Kundu, S., Hodas, N.: Learning deep neural network representations for koopman operators of nonlinear dynamical systems. In: 2019 American Control Conference (ACC). pp. 4832–4839. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Wu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chow, C., Dan, T., Styner, M., Wu, G. (2024). Understanding Brain Dynamics Through Neural Koopman Operator with Structure-Function Coupling. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics