Skip to main content

Best of Both Modalities: Fusing CBCT and Intraoral Scan Data Into a Single Tooth Image

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Cone-Beam CT (CBCT) and Intraoral Scan (IOS) are dental imaging techniques widely used for surgical planning and simulation. However, the spatial resolution of crowns is low in CBCT, and roots are not visible in IOS. We propose to take the best of both modalities: a seamless fusion of the crown from IOS and the root from CBCT into a single image in a watertight mesh, unlike prior works that compromise the resolution or simply overlay two images. The main challenges are aligning two images (registration) and fusing them (stitching) despite a large gap in the spatial resolution between two modalities. For effective registration, we propose centroid matching followed by coarse- and fine-registration based on the point-to-plane ICP method. Next, stitching of registered images is done to create a watertight mesh, for which we recursively interpolate the boundary points to seamlessly fill the gap between the registered images. Experiments show that the proposed method incurs low registration error, and the fused images are of high quality and accuracy according to the evaluation by experts.

S. Kim and Y. Choi—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor fusion IV: control paradigms and data structures. vol. 1611, pp. 586–606. Spie (1992)

    Google Scholar 

  2. Chung, M., Lee, J., Song, W., Song, Y., Yang, I.H., Lee, J., Shin, Y.G.: Automatic registration between dental cone-beam ct and scanned surface via deep pose regression neural networks and clustered similarities. IEEE Transactions on Medical Imaging 39(12), 3900–3909 (2020)

    Article  Google Scholar 

  3. Cui, Z., Fang, Y., Mei, L., Zhang, B., Yu, B., Liu, J., Jiang, C., Sun, Y., Ma, L., Huang, J., et al.: A fully automatic ai system for tooth and alveolar bone segmentation from cone-beam ct images. Nature communications 13(1),  2096 (2022)

    Article  Google Scholar 

  4. Cui, Z., Li, C., Chen, N., Wei, G., Chen, R., Zhou, Y., Shen, D., Wang, W.: Tsegnet: An efficient and accurate tooth segmentation network on 3d dental model. Medical Image Analysis 69, 101949 (2021)

    Article  Google Scholar 

  5. Cui, Z., Li, C., Wang, W.: Toothnet: automatic tooth instance segmentation and identification from cone beam ct images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6368–6377 (2019)

    Google Scholar 

  6. Deferm, J., Nijsink, J., Baan, F., Verhamme, L., Meijer, G., Maal, T.: Soft tissue-based registration of intraoral scan with cone beam computed tomography scan. International Journal of Oral and Maxillofacial Surgery 51(2), 263–268 (2022)

    Article  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022)

    Google Scholar 

  8. Ender, A., Zimmermann, M., Mehl, A.: Accuracy of complete-and partial-arch impressions of actual intraoral scanning systems in vitro. International journal of computerized dentistry 22(1), 11–19 (2019)

    Google Scholar 

  9. Ezhov, M., Gusarev, M., Golitsyna, M., Yates, J.M., Kushnerev, E., Tamimi, D., Aksoy, S., Shumilov, E., Sanders, A., Orhan, K.: Clinically applicable artificial intelligence system for dental diagnosis with cbct. Scientific reports 11(1), 15006 (2021)

    Article  Google Scholar 

  10. Gateno, J., Xia, J., Teichgraeber, J.F., Rosen, A.: A new technique for the creation of a computerized composite skull model. Journal of oral and maxillofacial surgery 61(2), 222–227 (2003)

    Article  Google Scholar 

  11. Hao, J., Liu, J., Li, J., Pan, W., Chen, R., Xiong, H., Sun, K., Lin, H., Liu, W., Ding, W., et al.: Ai-enabled automatic multimodal fusion of cone-beam ct and intraoral scans for intelligent 3d tooth-bone reconstruction and clinical applications. arXiv preprint arXiv:2203.05784 (2022)

  12. Hung, K., Yeung, A.W.K., Tanaka, R., Bornstein, M.M.: Current applications, opportunities, and limitations of ai for 3d imaging in dental research and practice. International Journal of Environmental Research and Public Health 17(12),  4424 (2020)

    Article  Google Scholar 

  13. Hyun, C.M., Bayaraa, T., Yun, H.S., Jang, T.J., Park, H.S., Seo, J.K.: Deep learning method for reducing metal artifacts in dental cone-beam ct using supplementary information from intra-oral scan. Physics in Medicine & Biology 67(17), 175007 (2022)

    Article  Google Scholar 

  14. Jang, T.J., Yun, H.S., Hyun, C.M., Kim, J.E., Lee, S.H., Seo, J.K.: Fully automatic integration of dental cbct images and full-arch intraoral impressions with stitching error correction via individual tooth segmentation and identification. arXiv preprint arXiv:2112.01784 (2021)

  15. Kim, S., Song, I.S., Baek, S.J.: Automatic segmentation of internal tooth structure from cbct images using hierarchical deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 703–713. Springer (2023)

    Google Scholar 

  16. Liang, Y., Qiu, L., Lu, T., Fang, Z., Tu, D., Yang, J., Shao, Y., Wang, K., Chen, X., He, L.: Oralviewer: 3d demonstration of dental surgeries for patient education with oral cavity reconstruction from a 2d panoramic x-ray. In: 26th International Conference on Intelligent User Interfaces. pp. 553–563 (2021)

    Google Scholar 

  17. Liu, J., Hao, J., Lin, H., Pan, W., Yang, J., Feng, Y., Wang, G., Li, J., Jin, Z., Zhao, Z., et al.: Deep learning-enabled 3d multimodal fusion of cone-beam ct and intraoral mesh scans for clinically applicable tooth-bone reconstruction. Patterns 4(9) (2023)

    Google Scholar 

  18. Low, K.L.: Linear least-squares optimization for point-to-plane icp surface registration. Chapel Hill, University of North Carolina 4(10),  1–3 (2004)

    Google Scholar 

  19. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing icp variants on real-world data sets: Open-source library and experimental protocol. Autonomous robots 34, 133–148 (2013)

    Article  Google Scholar 

  20. Qian, J., Lu, S., Gao, Y., Tao, Y., Lin, J., Lin, H.: An automatic tooth reconstruction method based on multimodal data. Journal of Visualization 24, 205–221 (2021)

    Article  Google Scholar 

  21. Singhal, I., Kaur, G., Neefs, D., Pathak, A.: A literature review of the future of oral medicine and radiology, oral pathology, and oral surgery in the hands of technology. Cureus 15(9) (2023)

    Google Scholar 

  22. Sukotjo, C., Schreiber, S., Li, J., Zhang, M., Chia-Chun Yuan, J., Santoso, M.: Development and student perception of virtual reality for implant surgery. Education Sciences 11(4),  176 (2021)

    Article  Google Scholar 

  23. Swennen, G., Barth, E.L., Eulzer, C., Schutyser, F.: The use of a new 3d splint and double ct scan procedure to obtain an accurate anatomic virtual augmented model of the skull. International journal of oral and maxillofacial surgery 36(2), 146–152 (2007)

    Article  Google Scholar 

  24. Swennen, G., Mommaerts, M., Abeloos, J., De Clercq, C., Lamoral, P., Neyt, N., Casselman, J., Schutyser, F.: A cone-beam ct based technique to augment the 3d virtual skull model with a detailed dental surface. International journal of oral and maxillofacial surgery 38(1), 48–57 (2009)

    Article  Google Scholar 

  25. Wang, H., Minnema, J., Batenburg, K.J., Forouzanfar, T., Hu, F.J., Wu, G.: Multiclass cbct image segmentation for orthodontics with deep learning. Journal of dental research 100(9), 943–949 (2021)

    Article  Google Scholar 

  26. Xia, J.J., Gateno, J., Teichgraeber, J.F.: New clinical protocol to evaluate craniomaxillofacial deformity and plan surgical correction. Journal of Oral and Maxillofacial Surgery 67(10), 2093–2106 (2009)

    Article  Google Scholar 

  27. Xiong, H., Li, K., Tan, K., Feng, Y., Zhou, J.T., Hao, J., Ying, H., Wu, J., Liu, Z.: Tsegformer: 3d tooth segmentation in intraoral scans with geometry guided transformer. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 421–432. Springer (2023)

    Google Scholar 

  28. Zhao, Y., Zhang, L., Liu, Y., Meng, D., Cui, Z., Gao, C., Gao, X., Lian, C., Shen, D.: Two-stream graph convolutional network for intra-oral scanner image segmentation. IEEE Transactions on Medical Imaging 41(4), 826–835 (2021)

    Article  Google Scholar 

  29. Zhou, X., Gan, Y., Xiong, J., Zhang, D., Zhao, Q., Xia, Z.: A method for tooth model reconstruction based on integration of multimodal images. Journal of healthcare engineering 2018 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A5A1027646), the MSIT (Ministry of Science and ICT), Korea, under the ICT Creative Consilience program (IITP-2020-0-01819) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation), and the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 1711195279, RS-2021-KD000009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Jun Baek .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 978 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, S. et al. (2024). Best of Both Modalities: Fusing CBCT and Intraoral Scan Data Into a Single Tooth Image. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics