Skip to main content

Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Physics-inspired regularization is desired for intra-patient image registration since it can effectively capture the biomechanical characteristics of anatomical structures. However, a major challenge lies in the reliance on physical parameters: Parameter estimations vary widely across the literature, and the physical properties themselves are inherently subject-specific. In this work, we introduce a novel data-driven method that leverages hypernetworks to learn the tissue-dependent elasticity parameters of an elastic regularizer. Notably, our approach facilitates the estimation of patient-specific parameters without the need to retrain the network. We evaluate our method on three publicly available 2D and 3D lung CT and cardiac MR datasets. We find that with our proposed subject-specific tissue-dependent regularization, a higher registration quality is achieved across all datasets compared to using a global regularizer. The code is available at https://github.com/compai-lab/2024-miccai-reithmeir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arratia López, P., Mella, H., Uribe, S., Hurtado, D.E., Sahli Costabal, F.: Warppinn: Cine-mr image registration with physics-informed neural networks. Medical Image Analysis 89, 102925 (2023)

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M., Guttag, J., Dalca, A.: Voxelmorph: A learning framework for deformable medical image registration. IEEE Transactions on Medical Imaging 38, 1788–1800 (2019)

    Article  Google Scholar 

  3. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P.A., Cetin, I., Lekadir, K., Camara, O., Ballester, M.A.G., et al.: Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE transactions on medical imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Broit, C.: Optimal Registration of Deformed Images. Graduate School of Arts and Sciences, University of Pennsylvania (1981)

    Google Scholar 

  5. Cocciolone, A.J., Hawes, J.Z., Staiculescu, M.C., Johnson, E.O., Murshed, M., Wagenseil, J.E.: Elastin, arterial mechanics, and cardiovascular disease. American Journal of Physiology-Heart and Circulatory Physiology 315(2), H189–H205 (2018)

    Article  Google Scholar 

  6. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2017)

  7. Haak, A.J., Tan, Q., Tschumperlin, D.J.: Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biology 73, 64–76 (2018)

    Article  Google Scholar 

  8. Hagemann, A., Rohr, K., Stiehl, H., Spetzger, U., Gilsbach, J.: Biomechanical modeling of the human head for physically based, nonrigid image registration. IEEE Transactions on Medical Imaging 18(10), 875–884 (1999)

    Article  Google Scholar 

  9. Hering, A., Hansen, L., Mok, T.C.W., et al.: Learn2reg: Comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. IEEE Transactions on Medical Imaging 42(3), 697–712 (2023)

    Article  Google Scholar 

  10. Hering, A., Murphy, K., van Ginneken, B.: Learn2reg challenge: Ct lung registration - training data [data set]. zenodo. https://doi.org/10.5281/zenodo.3835682 (2020)

  11. Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., Dalca, A.V.: Hypermorph: Amortized hyperparameter learning for image registration. Information Processing in Medical Imaging (IPMI), vol. 12729, p. 3-17 (2021)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Min, Z., Baum, Z.M.C., Saeed, S.U., Emberton, M., Barratt, D.C., Taylor, Z.A., Hu, Y.: Non-rigid medical image registration using physics-informed neural networks. In: Information Processing in Medical Imaging (IPMI) (2023)

    Google Scholar 

  14. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with laplacian pyramid networks. Medical Image Computing and Computer Assisted Intervention (MICCAI), vol. 12263, pp. 211–221 (2020)

    Google Scholar 

  15. Qin, C., Wang, S., Chen, C., Bai, W., Rueckert, D.: Generative myocardial motion tracking via latent space exploration with biomechanics-informed prior. Medical Image Analysis 83, 102682 (2023)

    Article  Google Scholar 

  16. Ragoza, M., Batmanghelich, K.: Physics-informed neural networks for tissue elasticity reconstruction in magnetic resonance elastography. In: Medical Image Computing and Computer Assisted Intervention (MICCAI). pp. 333–343 (2023)

    Google Scholar 

  17. Reithmeir, A., Schnabel, J.A., Zimmer, V.A.: Learning physics-inspired regularization for medical image registration with hypernetworks. In: Medical Imaging 2024: Image Processing. International Society for Optics and Photonics, SPIE (2024 (accepted))

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). pp. 234–241 (2015)

    Google Scholar 

  19. Rueckert, D., Schnabel, J.A.: Medical Image Registration, pp. 131–154. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  20. Talwalkar, J.A.: Elastography for detecting hepatic fibrosis: options and considerations. Gastroenterology 135(1), 299–302 (2008)

    Article  Google Scholar 

  21. Team, N.L.S.T.R.: Data from the national lung screening trial (nlst) [data set]. the cancer imaging archive. (2013)

    Google Scholar 

  22. Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W., Heye, T., Boll, D.T., Cyriac, J., Yang, S., Bach, M., Segeroth, M.: Totalsegmentator: Robust segmentation of 104 anatomic structures in ct images. Radiology: Artificial Intelligence 5(5) (2023)

    Google Scholar 

  23. Zioupos, P.: Ageing human bone: Factors affecting its biomechanical properties and the role of collagen. Journal of Biomaterials Applications 15(3), 187–229 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

Anna Reithmeir is funded by the Munich Center for Machine Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Reithmeir .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1990 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reithmeir, A., Felsner, L., Braren, R., Schnabel, J.A., Zimmer, V.A. (2024). Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics