Skip to main content

Deep-Learning-Based Groupwise Registration for Motion Correction of Cardiac \(T_1\) Mapping

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15002))

  • 2075 Accesses

Abstract

Quantitative \(T_1\) mapping by MRI is an increasingly important tool for clinical assessment of cardiovascular diseases. The cardiac \(T_1\) map is derived by fitting a known signal model to a series of baseline images, while the quality of this map can be deteriorated by involuntary respiratory and cardiac motion. To correct motion, a template image is often needed to register all baseline images, but the choice of template is nontrivial, leading to inconsistent performance sensitive to image contrast. In this work, we propose a novel deep-learning-based groupwise registration framework, which omits the need for a template, and registers all baseline images simultaneously. We design two groupwise losses for this registration framework: the first is a linear principal component analysis (PCA) loss that enforces alignment of baseline images irrespective of the intensity variation, and the second is an auxiliary relaxometry loss that enforces adherence of intensity profile to the signal model. We extensively evaluated our method, termed “PCA-Relax”, and other baseline methods on an in-house cardiac MRI dataset including both pre- and post-contrast \(T_1\) sequences. All methods were evaluated under three distinct training-and-evaluation strategies, namely, standard, one-shot, and test-time-adaptation. The proposed PCA-Relax showed further improved performance of registration and mapping over well-established baselines. The proposed groupwise framework is generic and can be adapted to applications involving multiple images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arava, D., Masarwy, M., Khawaled, S., Freiman, M.: Deep-learning based motion correction for myocardial t1 mapping. In: 2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). pp. 55–59. IEEE (2021)

    Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE transactions on medical imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Bron, E.E., van Tiel, J., Smit, H., Poot, D.H., Niessen, W.J., Krestin, G.P., Weinans, H., Oei, E.H., Kotek, G., Klein, S.: Image registration improves human knee cartilage t1 mapping with delayed gadolinium-enhanced mri of cartilage (dgemric). European radiology 23, 246–252 (2013)

    Article  Google Scholar 

  4. Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X.: Deep learning in medical image registration: a review. Physics in Medicine & Biology 65(20), 20TR01 (2020)

    Google Scholar 

  5. van de Giessen, M., Tao, Q., van der Geest, R.J., Lelieveldt, B.P.: Model-based alignment of look-locker mri sequences for calibrated myocardical scar tissue quantification. In: 2013 IEEE 10th International Symposium on Biomedical Imaging. pp. 1038–1041. IEEE (2013)

    Google Scholar 

  6. Haaf, P., Garg, P., Messroghli, D.R., Broadbent, D.A., Greenwood, J.P., Plein, S.: Cardiac t1 mapping and extracellular volume (ecv) in clinical practice: a comprehensive review. Journal of Cardiovascular Magnetic Resonance 18(1),  89 (2016)

    Article  Google Scholar 

  7. Hanania, E., Volovik, I., Barkat, L., Cohen, I., Freiman, M.: Pcmc-t1: Free-breathing myocardial t1 mapping with physically-constrained motion correction. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 226–235. Springer (2023)

    Google Scholar 

  8. Huizinga, W., Poot, D.H., Guyader, J.M., Klaassen, R., Coolen, B.F., van Kranenburg, M., Van Geuns, R., Uitterdijk, A., Polfliet, M., Vandemeulebroucke, J., et al.: Pca-based groupwise image registration for quantitative mri. Medical image analysis 29, 65–78 (2016)

    Article  Google Scholar 

  9. Kellman, P., Arai, A.E., Xue, H.: T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. Journal of Cardiovascular Magnetic Resonance 15(1), 1–12 (2013)

    Article  Google Scholar 

  10. Kellman, P., Hansen, M.S.: T1-mapping in the heart: accuracy and precision. Journal of cardiovascular magnetic resonance 16, 1–20 (2014)

    Article  Google Scholar 

  11. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE transactions on medical imaging 29(1), 196–205 (2009)

    Article  Google Scholar 

  12. Li, B., Niessen, W.J., Klein, S., Ikram, M.A., Vernooij, M.W., Bron, E.E.: Learning unbiased group-wise registration (lugr) and joint segmentation: evaluation on longitudinal diffusion mri. In: Medical Imaging 2021: Image Processing. vol. 11596, pp. 136–144. SPIE (2021)

    Google Scholar 

  13. Li, X., Zhang, Y., Zhao, Y., van Gemert, J., Tao, Q.: Contrast-agnostic groupwise registration by robust pca for quantitative cardiac mri. In: International Workshop on Statistical Atlases and Computational Models of the Heart. pp. 77–87. Springer (2023)

    Google Scholar 

  14. Li, Y., Wu, C., Qi, H., Si, D., Ding, H., Chen, H.: Motion correction for native myocardial t1 mapping using self-supervised deep learning registration with contrast separation. NMR in Biomedicine 35(10), e4775 (2022)

    Article  Google Scholar 

  15. Makela, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q.C., Katila, T., Magnin, I.E.: A review of cardiac image registration methods. IEEE Transactions on medical imaging 21(9), 1011–1021 (2002)

    Article  Google Scholar 

  16. Martín-González, E., Sevilla, T., Revilla-Orodea, A., Casaseca-de-la Higuera, P., Alberola-López, C.: Groupwise non-rigid registration with deep learning: an affordable solution applied to 2d cardiac cine mri reconstruction. Entropy 22(6),  687 (2020)

    Article  MathSciNet  Google Scholar 

  17. Messroghli, D.R., Radjenovic, A., Kozerke, S., Higgins, D.M., Sivananthan, M.U., Ridgway, J.P.: Modified look-locker inversion recovery (molli) for high-resolution t1 mapping of the heart. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 52(1), 141–146 (2004)

    Article  Google Scholar 

  18. Metz, C.T., Klein, S., Schaap, M., van Walsum, T., Niessen, W.J.: Nonrigid registration of dynamic medical imaging data using nd+ t b-splines and a groupwise optimization approach. Medical image analysis 15(2), 238–249 (2011)

    Article  Google Scholar 

  19. O’Brien, A.T., Gil, K.E., Varghese, J., Simonetti, O.P., Zareba, K.M.: T2 mapping in myocardial disease: a comprehensive review. Journal of Cardiovascular Magnetic Resonance 24(1),  33 (2022)

    Article  Google Scholar 

  20. Qiao, M., Wang, Y., Berendsen, F.F., van der Geest, R.J., Tao, Q.: Fully automated segmentation of the left atrium, pulmonary veins, and left atrial appendage from magnetic resonance angiography by joint-atlas-optimization. Medical physics 46(5), 2074–2084 (2019)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. pp. 234–241. Springer (2015)

    Google Scholar 

  22. Schelbert, E.B., Messroghli, D.R.: State of the art: clinical applications of cardiac t1 mapping. Radiology 278(3), 658–676 (2016)

    Article  Google Scholar 

  23. Tao, Q., van der Tol, P., Berendsen, F.F., Paiman, E.H., Lamb, H.J., van der Geest, R.J.: Robust motion correction for myocardial t1 and extracellular volume mapping by principle component analysis-based groupwise image registration. Journal of Magnetic Resonance Imaging 47(5), 1397–1405 (2018)

    Article  Google Scholar 

  24. Tilborghs, S., Dresselaers, T., Claus, P., Claessen, G., Bogaert, J., Maes, F., Suetens, P.: Robust motion correction for cardiac t1 and ecv mapping using a t1 relaxation model approach. Medical Image Analysis 52, 212–227 (2019)

    Article  Google Scholar 

  25. Wachinger, C., Navab, N.: Simultaneous registration of multiple images: similarity metrics and efficient optimization. IEEE transactions on pattern analysis and machine intelligence 35(5), 1221–1233 (2012)

    Article  Google Scholar 

  26. Xue, H., Shah, S., Greiser, A., Guetter, C., Littmann, A., Jolly, M.P., Arai, A.E., Zuehlsdorff, S., Guehring, J., Kellman, P.: Motion correction for myocardial t1 mapping using image registration with synthetic image estimation. Magnetic resonance in medicine 67(6), 1644–1655 (2012)

    Article  Google Scholar 

  27. Yang, J., Küstner, T., Hu, P., Liò, P., Qi, H.: End-to-end deep learning of non-rigid groupwise registration and reconstruction of dynamic mri. Frontiers in cardiovascular medicine 9, 880186 (2022)

    Article  Google Scholar 

  28. Zhang, Y., Wu, X., Gach, H.M., Li, H., Yang, D.: Groupregnet: a groupwise one-shot deep learning-based 4d image registration method. Physics in Medicine & Biology 66(4), 045030 (2021)

    Article  Google Scholar 

  29. Zhao, Y., Zhang, Y., Tao, Q.: Relaxometry guided quantitative cardiac magnetic resonance image reconstruction. In: International Workshop on Statistical Atlases and Computational Models of the Heart. pp. 349–358. Springer (2023)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge TU Delft AI Initiative and Amazon Research Awards for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Tao .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 36191 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhao, Y., Huang, L., Xia, L., Tao, Q. (2024). Deep-Learning-Based Groupwise Registration for Motion Correction of Cardiac \(T_1\) Mapping. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics