Skip to main content

On-the-Fly Guidance Training for Medical Image Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15002))

  • 2151 Accesses

Abstract

This study introduces a novel On-the-Fly Guidance (OFG) training framework for enhancing existing learning-based image registration models, addressing the limitations of weakly-supervised and unsupervised methods. Weakly-supervised methods struggle due to the scarcity of labeled data, and unsupervised methods directly depend on image similarity metrics for accuracy. Our method proposes a supervised fashion for training registration models, without the need for any labeled data. OFG generates pseudo-ground truth during training by refining deformation predictions with a differentiable optimizer, enabling direct supervised learning. OFG optimizes deformation predictions efficiently, improving the performance of registration models without sacrificing inference speed. Our method is tested across several benchmark datasets and leading models, it significantly enhanced performance, providing a plug-and-play solution for training learning-based registration models. Code available at: https://github.com/cilix-ai/on-the-fly-guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage p. 95-113 (Oct 2007)

    Google Scholar 

  2. AV, D., A, B., NS, R., P, G.: Patch-based discrete registration of clinical brain images. Patch Based Tech Med Imaging (2016) (2016)

    Google Scholar 

  3. Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008), special Issue on The Third International Workshop on Biomedical Image Registration - WBIR 2006

    Google Scholar 

  4. Bajcsy, R., Kovačič, S.: Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing 46(1), 1–21 (1989)

    Article  Google Scholar 

  5. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: A learning framework for deformable medical image registration. IEEE Transactions on Medical Imaging 38(8), 1788–1800 (aug 2019)

    Google Scholar 

  6. Bigalke, A., Hansen, L., Mok, T.C.W., Heinrich, M.P.: Unsupervised 3d registration through optimization-guided cyclical self-training. In: Greenspan, H., Madabhushi, A., Mousavi, P., Salcudean, S., Duncan, J., Syeda-Mahmood, T., Taylor, R. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. pp. 677–687. Springer Nature Switzerland, Cham (2023)

    Chapter  Google Scholar 

  7. C, C., L, W., LD, S., JG, C., MI, M., JT, R.: Large deformation diffeomorphic metric mapping registration of reconstructed 3d histological section images and in vivo mr images. Front Hum Neurosci (2010)

    Google Scholar 

  8. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: TransMorph: Transformer for unsupervised medical image registration. Medical Image Analysis 82, 102615 (nov 2022)

    Google Scholar 

  9. Chen, J., He, Y., Frey, E.C., Li, Y., Du, Y.: Vit-v-net: Vision transformer for unsupervised volumetric medical image registration (2021)

    Google Scholar 

  10. Chen, Q., Li, Z., Lui, L.M.: A learning framework for diffeomorphic image registration based on quasi-conformal geometry. CoRR abs/2110.10580 (2021)

    Google Scholar 

  11. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through mrfs and efficient linear programming. Medical Image Analysis 12(6), 731–741 (2008), special issue on information processing in medical imaging 2007

    Google Scholar 

  12. Hering, A., Hansen, L., Mok, T.C.W., Chung, A.C.S., Siebert, H., Häger, S., Lange, A., Kuckertz, S., Heldmann, S., Shao, W., Vesal, S., Rusu, M., Sonn, G., Estienne, T., Vakalopoulou, M., Han, L., Huang, Y., Yap, P.T., Brudfors, M., Balbastre, Y., Joutard, S., Modat, M., Lifshitz, G., Raviv, D., Lv, J., Li, Q., Jaouen, V., Visvikis, D., Fourcade, C., Rubeaux, M., Pan, W., Xu, Z., Jian, B., De Benetti, F., Wodzinski, M., Gunnarsson, N., Sjölund, J., Grzech, D., Qiu, H., Li, Z., Thorley, A., Duan, J., Großbröhmer, C., Hoopes, A., Reinertsen, I., Xiao, Y., Landman, B., Huo, Y., Murphy, K., Lessmann, N., van Ginneken, B., Dalca, A.V., Heinrich, M.P.: Learn2reg: Comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. IEEE Transactions on Medical Imaging 42(3), 697–712 (2023). https://doi.org/10.1109/TMI.2022.3213983

    Article  Google Scholar 

  13. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks (2016)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2017)

    Google Scholar 

  15. Liu, R., Li, Z., Fan, X., Zhao, C., Huang, H., Luo, Z.: Learning deformable image registration from optimization: Perspective, modules, bilevel training and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(11), 7688–7704 (2022)

    Article  Google Scholar 

  16. Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using free-form deformations with a local rigidity constraint. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. pp. 639–646. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

    Google Scholar 

  17. London, I.C.: Information extraction from images (2023), https://brain-development.org/ixi-dataset/

  18. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults. Journal of Cognitive Neuroscience 19(9), 1498–1507 (09 2007)

    Google Scholar 

  19. Centre for Medical Image Computing, University College London, U.: Niftyreg (2023), http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg

  20. Nazib, A., Fookes, C., Perrin, D.: A comparative analysis of registration tools: Traditional vs deep learning approach on high resolution tissue cleared data (2018)

    Google Scholar 

  21. Shen, D., Davatzikos, C.: Hammer: hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging 21(11), 1421–1439 (2002)

    Article  Google Scholar 

  22. Shen, Z., Han, X., Xu, Z., Niethammer, M.: Networks for Joint Affine and Non-parametric Image Registration. arXiv e-prints arXiv:1903.08811 (Mar 2019)

  23. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3d convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2017. pp. 232–239. Springer International Publishing, Cham (2017)

    Google Scholar 

  24. University of Southern California, L.o.N.I.: Loni probabilistic brain atlas (lpba40) (2023), https://loni.usc.edu/research/atlases

  25. Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)

    Article  Google Scholar 

  26. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Medical Image Analysis 52, 128–143 (feb 2019)

    Google Scholar 

  27. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: Fast predictive image registration - a deep learning approach (2017)

    Google Scholar 

  28. Zhang, Y., Pei, Y., Zha, H.: Learning dual transformer network for diffeomorphic registration. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. pp. 129–138. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  29. Zou, J., Gao, B., Song, Y., Qin, J.: A review of deep learning-based deformable medical image registration. Frontiers in Oncology 12 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuelin Xin .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3935 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xin, Y., Chen, Y., Ji, S., Han, K., Xie, X. (2024). On-the-Fly Guidance Training for Medical Image Registration. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics