Skip to main content

PULPo: Probabilistic Unsupervised Laplacian Pyramid Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15002))

  • 1854 Accesses

Abstract

Deformable image registration is fundamental to many medical imaging applications. Registration is an inherently ambiguous task often admitting many viable solutions. While neural network-based registration techniques enable fast and accurate registration, the majority of existing approaches are not able to estimate uncertainty. Here, we present PULPo, a method for probabilistic deformable registration capable of uncertainty quantification. PULPo probabilistically models the distribution of deformation fields on different hierarchical levels combining them using Laplacian pyramids. This allows our method to model global as well as local aspects of the deformation field. We evaluate our method on two widely used neuroimaging datasets and find that it achieves high registration performance as well as substantially better calibrated uncertainty quantification compared to the current state-of-the-art (The code is available at https://github.com/leonardsiegert/PULPo.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)

    Article  Google Scholar 

  2. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  3. Baheti, B., Waldmannstetter, D., Chakrabarty, S., Akbari, H., Bilello, M., Wiestler, B., Schwarting, J., Calabrese, E., Rudie, J.D., Abidi, S.A.R., Mousa, M.S., Villanueva-Meyer, J.E., Marcus, D.S., Davatzikos, C., Sotiras, A., Menze, B.H., Bakas, S.: The brain tumor sequence registration challenge: Establishing correspondence between pre-operative and follow-up mri scans of diffuse glioma patients. ArXiv abs/2112.06979 (2021), https://api.semanticscholar.org/CorpusID:245131368

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE transactions on medical imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Baumgartner, C.F., Tezcan, K.C., Chaitanya, K., Hötker, A.M., Muehlematter, U.J., Schawkat, K., Becker, A.S., Donati, O., Konukoglu, E.: Phiseg: Capturing uncertainty in medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22. pp. 119–127. Springer (2019)

    Google Scholar 

  6. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International journal of computer vision 61, 139–157 (2005)

    Article  Google Scholar 

  7. Burt, P.J., Adelson, E.H.: The laplacian pyramid as a compact image code. In: Readings in computer vision, pp. 671–679. Elsevier (1987)

    Google Scholar 

  8. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: Transmorph: Transformer for unsupervised medical image registration. Medical image analysis 82, 102615 (2022)

    Article  Google Scholar 

  9. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part I. pp. 729–738. Springer (2018)

    Google Scholar 

  10. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Medical image analysis 57, 226–236 (2019)

    Article  Google Scholar 

  11. Fischer, P., Küstner, T., Baumgartner, C.F.: Uncertainty estimation and propagation in accelerated mri reconstruction. arXiv preprint arXiv:2308.02631 (2023)

  12. Grzech, D., Azampour, M.F., Qiu, H., Glocker, B., Kainz, B., Loïc, L.F.: Uncertainty quantification in non-rigid image registration via stochastic gradient markov chain monte carlo. In: MELBA Special Issue: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE) 2020. vol. 12443, p. 3. MELBA (2021)

    Google Scholar 

  13. Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., Dalca, A.V.: Hypermorph: Amortized hyperparameter learning for image registration. In: Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings 27. pp. 3–17. Springer (2021)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Krebs, J., Delingette, H., Mailhé, B., Ayache, N., Mansi, T.: Learning a probabilistic model for diffeomorphic registration. IEEE transactions on medical imaging 38(9), 2165–2176 (2019)

    Article  Google Scholar 

  16. Laves, M.H., Ihler, S., Fast, J.F., Kahrs, L.A., Ortmaier, T.: Recalibration of aleatoric and epistemic regression uncertainty in medical imaging. arXiv preprint arXiv:2104.12376 (2021)

  17. Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern recognition 32(1), 129–149 (1999)

    Article  Google Scholar 

  18. Luo, J., Sedghi, A., Popuri, K., Cobzas, D., Zhang, M., Preiswerk, F., Toews, M., Golby, A., Sugiyama, M., Wells, W.M., et al.: On the applicability of registration uncertainty. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22. pp. 410–419. Springer (2019)

    Google Scholar 

  19. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults. Journal of cognitive neuroscience 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  20. Meng, M., Bi, L., Feng, D., Kim, J.: Brain tumor sequence registration with non-iterative coarse-to-fine networks and dual deep supervision. arXiv preprint arXiv:2211.07876 (2022)

  21. Meng, M., Bi, L., Feng, D., Kim, J.: Non-iterative coarse-to-fine registration based on single-pass deep cumulative learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 88–97. Springer (2022)

    Google Scholar 

  22. Mok, T.C., Chung, A.C.: Large deformation diffeomorphic image registration with laplacian pyramid networks. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23. pp. 211–221. Springer (2020)

    Google Scholar 

  23. Parisot, S., Wells III, W., Chemouny, S., Duffau, H., Paragios, N.: Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs. Medical image analysis 18(4), 647–659 (2014)

    Article  Google Scholar 

  24. Risholm, P., Janoos, F., Norton, I., Golby, A.J., Wells III, W.M.: Bayesian characterization of uncertainty in intra-subject non-rigid registration. Medical image analysis 17(5), 538–555 (2013)

    Article  Google Scholar 

  25. Risholm, P., Pieper, S., Samset, E., Wells III, W.M.: Summarizing and visualizing uncertainty in non-rigid registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 554–561. Springer (2010)

    Google Scholar 

  26. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast mr images. IEEE transactions on medical imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  27. Smolders, A., Lomax, T., Weber, D.C., Albertini, F.: Deformable image registration uncertainty quantification using deep learning for dose accumulation in adaptive proton therapy. In: International Workshop on Biomedical Image Registration. pp. 57–66. Springer (2022)

    Google Scholar 

  28. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. Advances in neural information processing systems 28 (2015)

    Google Scholar 

  29. Taha, A., Gilmore, G., Abbass, M., Kai, J., Kuehn, T., Demarco, J., Gupta, G., Zajner, C., Cao, D., Chevalier, R., et al.: Magnetic resonance imaging datasets with anatomical fiducials for quality control and registration. Scientific Data 10(1),  449 (2023)

    Article  Google Scholar 

  30. Xu, Z., Luo, J., Lu, D., Yan, J., Frisken, S., Jagadeesan, J., Wells III, W.M., Li, X., Zheng, Y., Tong, R.K.y.: Double-uncertainty guided spatial and temporal consistency regularization weighting for learning-based abdominal registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 14–24. Springer (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellence Cluster 2064 “Machine Learning—New Perspectives for Science”, project number 390727645). The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Paul Fischer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Siegert .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3328 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siegert, L., Fischer, P., Heinrich, M.P., Baumgartner, C.F. (2024). PULPo: Probabilistic Unsupervised Laplacian Pyramid Registration. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics