Skip to main content

WiNet: Wavelet-Based Incremental Learning for Efficient Medical Image Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Deep image registration has demonstrated exceptional accuracy and fast inference. Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner. However, due to the cascaded nature and repeated composition/warping operations on feature maps, these methods negatively increase memory usage during training and testing. Moreover, such approaches lack explicit constraints on the learning process of small deformations at different scales, thus lacking explainability. In this study, we introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales, utilizing the wavelet coefficients derived from the original input image pair. By exploiting the properties of the wavelet transform, these estimated coefficients facilitate the seamless reconstruction of a full-resolution displacement/velocity field via our devised inverse discrete wavelet transform (IDWT) layer. This approach avoids the complexities of cascading networks or composition operations, making our WiNet an explainable and efficient competitor with other coarse-to-fine methods. Extensive experimental results from two 3D datasets show that our WiNet is accurate and GPU efficient. Code is available at https://github.com/x-xc/WiNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://brain-development.org/ixi-dataset/.

References

  1. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)

    Article  Google Scholar 

  2. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1), 26–41 (Feb 2008)

    Article  Google Scholar 

  3. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE transactions on medical imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International journal of computer vision 61, 139–157 (2005)

    Article  Google Scholar 

  6. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: Transmorph: Transformer for unsupervised medical image registration. Medical image analysis 82, 102615 (2022)

    Article  Google Scholar 

  7. Chen, J., He, Y., Frey, E.C., Li, Y., Du, Y.: Vit-v-net: Vision transformer for unsupervised volumetric medical image registration. arXiv preprint arXiv:2104.06468 (2021)

  8. Dalca, A., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Medical image analysis 57, 226–236 (2019)

    Article  Google Scholar 

  9. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 729–738. Springer (2018)

    Google Scholar 

  10. De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Medical image analysis 52, 128–143 (2019)

    Article  Google Scholar 

  11. Duan, J., Bello, G., Schlemper, J., Bai, W., Dawes, T.J., Biffi, C., de Marvao, A., Doumoud, G., O’Regan, D.P., Rueckert, D.: Automatic 3d bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE transactions on medical imaging 38(9), 2151–2164 (2019)

    Article  Google Scholar 

  12. Hu, B., Zhou, S., Xiong, Z., Wu, F.: Recursive decomposition network for deformable image registration. IEEE Journal of Biomedical and Health Informatics 26(10), 5130–5141 (2022)

    Article  Google Scholar 

  13. Jia, X., Bartlett, J., Chen, W., Song, S., Zhang, T., Cheng, X., Lu, W., Qiu, Z., Duan, J.: Fourier-net: Fast image registration with band-limited deformation. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 1015–1023 (2023)

    Google Scholar 

  14. Jia, X., Thorley, A., Chen, W., Qiu, H., Shen, L., Styles, I.B., Chang, H.J., Leonardis, A., De Marvao, A., O’Regan, D.P., et al.: Learning a model-driven variational network for deformable image registration. IEEE Transactions on Medical Imaging 41(1), 199–212 (2021)

    Article  Google Scholar 

  15. Kang, M., Hu, X., Huang, W., Scott, M.R., Reyes, M.: Dual-stream pyramid registration network. Medical image analysis 78, 102379 (2022)

    Article  Google Scholar 

  16. Kim, B., Kim, D.H., Park, S.H., Kim, J., Lee, J.G., Ye, J.C.: Cyclemorph: cycle consistent unsupervised deformable image registration. Medical image analysis 71, 102036 (2021)

    Article  Google Scholar 

  17. Mok, T.C., Chung, A.C.: Large deformation diffeomorphic image registration with laplacian pyramid networks. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23. pp. 211–221. Springer (2020)

    Google Scholar 

  18. Qiu, H., Qin, C., Schuh, A., Hammernik, K., Rueckert, D.: Learning diffeomorphic and modality-invariant registration using b-splines. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  19. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: A survey. IEEE transactions on medical imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  20. Stollnitz, E.J., DeRose, A.D., Salesin, D.H.: Wavelets for computer graphics: a primer. 1. Ieee computer graphics and applications 15(3), 76–84 (1995)

    Google Scholar 

  21. Thorley, A., Jia, X., Chang, H.J., Liu, B., Bunting, K., Stoll, V., de Marvao, A., O’Regan, D.P., Gkoutos, G., Kotecha, D., et al.: Nesterov accelerated admm for fast diffeomorphic image registration. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part IV 24. pp. 150–160. Springer (2021)

    Google Scholar 

  22. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  23. Wang, H., Ni, Dongand Wang, Y.: Modet: Learning deformable image registration via motion decomposition transformer. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. pp. 740–749 (2023)

    Google Scholar 

  24. Yang, X., Wu, N., Cheng, G., Zhou, Z., David, S.Y., Beitler, J.J., Curran, W.J., Liu, T.: Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal mri study in head-and-neck radiation therapy. International Journal of Radiation Oncology*Biology*Physics 90(5), 1225–1233 (2014)

    Google Scholar 

  25. Zhang, J.: Inverse-consistent deep networks for unsupervised deformable image registration. arXiv preprint arXiv:1809.03443 (2018)

  26. Zhao, S., Dong, Y., Chang, E.I., Xu, Y., et al.: Recursive cascaded networks for unsupervised medical image registration. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 10600–10610 (2019)

    Google Scholar 

  27. Zhao, S., Lau, T., Luo, J., Eric, I., Chang, C., Xu, Y.: Unsupervised 3d end-to-end medical image registration with volume tweening network. IEEE journal of biomedical and health informatics 24(5), 1394–1404 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The research were performed using the Baskerville Tier 2 HPC service. Baskerville was funded by the EPSRC and UKRI through the World Class Labs scheme (EP/T022221/1) and the Digital Research Infrastructure programme (EP/W032244/1) and is operated by Advanced Research Computing at the University of Birmingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Duan .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 66 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, X. et al. (2024). WiNet: Wavelet-Based Incremental Learning for Efficient Medical Image Registration. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics