Skip to main content

Lifelong Histopathology Whole Slide Image Retrieval via Distance Consistency Rehearsal

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15004))

Abstract

Content-based histopathological image retrieval (CBHIR) has gained attention in recent years, offering the capability to return histopathology images that are content-wise similar to the query one from an established database. However, in clinical practice, the continuously expanding size of WSI databases limits the practical application of the current CBHIR methods. In this paper, we propose a Lifelong Whole Slide Retrieval (LWSR) framework to address the challenges of catastrophic forgetting by progressive model updating on continuously growing retrieval database. Our framework aims to achieve the balance between stability and plasticity during continuous learning. To preserve system plasticity, we utilize local memory bank with reservoir sampling method to save instances, which can comprehensively encompass the feature spaces of both old and new tasks. Furthermore, A distance consistency rehearsal (DCR) module is designed to ensure the retrieval queue’s consistency for previous tasks, which is regarded as stability within a lifelong CBHIR system. We evaluated the proposed method on four public WSI datasets from TCGA projects. The experimental results have demonstrated the proposed method is effective and is superior to the state-of-the-art methods. The code is available at https://github.com/OliverZXY/LWSR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buzzega, P., Boschini, M., Porrello, A., Abati, D., Calderara, S.: Dark experience for general continual learning: a strong, simple baseline. Advances in neural information processing systems 33, 15920–15930 (2020)

    Google Scholar 

  2. Caccia, L., Aljundi, R., Asadi, N., Tuytelaars, T., Pineau, J., Belilovsky, E.: New insights on reducing abrupt representation change in online continual learning. arXiv preprint arXiv:2104.05025 (2021)

  3. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for incremental learning: Understanding forgetting and intransigence. In: Proceedings of the European conference on computer vision (ECCV). pp. 532-547 (2018)

    Google Scholar 

  4. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420 (2018)

  5. Chen, C., Lu, M.Y., Williamson, D.F., Chen, T.Y., Schaumberg, A.J., Mahmood, F.: Fast and scalable search of wholeslide images via self-supervised deep learning. Nature Biomedical Engineering 6(12), 1420-1434 (2022)

    Article  Google Scholar 

  6. Chen, R.J., Chen, C., Li, Y., Chen, T.Y., Trister, A.D., Krishnan, R.G., Mahmood, F.: Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 16144–16155 (June 2022)

    Google Scholar 

  7. Chen, R.J., Krishnan, R.G.: Selfsupervised vision transformers learn visual concepts in histopathology. Learning Meaningful Representations of Life, NeurIPS 2021 (2021)

    Google Scholar 

  8. Chen, R.J., Lu, M.Y., Williamson, D.F., Chen, T.Y., Lipkova, J., Shaban, M., Shady, M., Williams, M., Joo, B., Noor, Z., et al.: Pan-cancer integrative histologygenomic analysis via multimodal deep learning. Cancer Cell (2022)

    Google Scholar 

  9. De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G., Tuytelaars, T.: A continual learning survey: Defying forgetting in classification tasks. IEEE transactions on pattern analysis and machine intelligence 44(7), 3366–3385 (2021)

    Google Scholar 

  10. Douillard, A., Chen, Y., Dapogny, A., Cord, M.: Plop: Learning without forgetting for continual semantic segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 4040–4050 (2021)

    Google Scholar 

  11. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cognitive sciences 3(4), 128-135 (1999)

    Article  Google Scholar 

  12. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradientbased neural networks. arXiv preprint arXiv:1312.6211 (2013)

  13. Huang, Y., Zhao, W., Wang, S., Fu, Y., Jiang, Y., Yu, L.: Conslide: Asynchronous hierarchical interaction transformer with breakup-reorganize rehearsal for continual whole slide image analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 21349-21360 (2023)

    Google Scholar 

  14. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T.J., Zou, J.: A visual-language foundation model for pathology image analysis using medical twitter. Nature Medicine pp. 1–10 (2023)

    Google Scholar 

  15. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    Article  Google Scholar 

  16. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  17. Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern analysis and machine intelligence 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  18. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  19. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Dataefficient and weakly supervised computational pathology on whole-slide images. Nature Biomedical Engineering 5(6), 555-570 (2021)

    Article  Google Scholar 

  20. Maracani, A., Michieli, U., Toldo, M., Zanuttigh, P.: Recall: Replay-based continual learning in semantic segmentation. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 7026–7035 (2021)

    Google Scholar 

  21. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier and representation learning. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 2001–2010 (2017)

    Google Scholar 

  22. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., et al.: Transmil: Transformer based correlated multiple instance learning for whole slide image classification. Advances in Neural Information Processing Systems 34, 2136-2147 (2021)

    Google Scholar 

  23. Spearman, C.: The proof and measurement of association between two things. The American journal of psychology 100(3/4), 441–471 (1987)

    Article  Google Scholar 

  24. Vitter, J.S.: Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS) 11(1), 37–57 (1985)

    Article  MathSciNet  Google Scholar 

  25. Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Yang, W., Huang, J., Han, X.: Transformer-based unsupervised contrastive learning for histopathological image classification. Medical image analysis 81, 102559 (2022)

    Article  Google Scholar 

  26. Wang, Z., Zhang, Z., Lee, C.Y., Zhang, H., Sun, R., Ren, X., Su, G., Perot, V., Dy, J., Pfister, T.: Learning to prompt for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 139–149 (2022)

    Google Scholar 

  27. Yan, S., Xie, J., He, X.: Der: Dynamically expandable representation for class incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3014–3023 (2021)

    Google Scholar 

  28. Zheng, Y., Jiang, Z., Shi, J., Xie, F., Zhang, H., Huai, J., Cao, M., Yang, X.: Diagnostic regions attention network (dranet) for histopathology wsi recommendation and retrieval. IEEE Transactions on Medical Imaging (2020). https://doi.org/10.1109/TMI.2020.3046636

    Article  Google Scholar 

  29. Zheng, Y., Jiang, Z., Zhang, H., Xie, F., Shi, J.: Tracing diagnosis paths on histopathology wsis for diagnostically relevant case recommendation. In: Medical Image Computing and ComputerAssisted Intervention. pp. 459-469 (2020). https://doi.org/10.1007/978-3-030-59722-1_44

Download references

Acknowledgments

This work was partly supported by Beijing Natural Science Foundation (Grant No. 7242270), partly supported by the National Natural Science Foundation of China (Grant No. 62171007, 61901018, and 61906058), and partly supported by the Fundamental Research Funds for the Central Universities of China (grant No. YWF-23-Q-1075 and JZ2022HGTB0285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushan Zheng .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 199 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Jiang, Z., Wu, K., Shi, J., Zheng, Y. (2024). Lifelong Histopathology Whole Slide Image Retrieval via Distance Consistency Rehearsal. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics