Skip to main content

Prompting Whole Slide Image Based Genetic Biomarker Prediction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15004))

  • 1345 Accesses

Abstract

Prediction of genetic biomarkers, e.g., microsatellite instability and BRAF in colorectal cancer is crucial for clinical decision making. In this paper, we propose a whole slide image (WSI) based genetic biomarker prediction method via prompting techniques. Our work aims at addressing the following challenges: (1) extracting foreground instances related to genetic biomarkers from gigapixel WSIs, and (2) the interaction among the fine-grained pathological components in WSIs. Specifically, we leverage large language models to generate medical prompts that serve as prior knowledge in extracting instances associated with genetic biomarkers. We adopt a coarse-to-fine approach to mine biomarker information within the tumor microenvironment. This involves extracting instances related to genetic biomarkers using coarse medical prior knowledge, grouping pathology instances into fine-grained pathological components and mining their interactions. Experimental results on two colorectal cancer datasets show the superiority of our method, achieving 91.49% in AUC for MSI classification. The analysis further shows the clinical interpretability of our method. Code is publicly available at https://github.com/DeepMed-Lab-ECNU/PromptBio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajani, J.A., D’Amico, T.A., Bentrem, D.J., Cooke, D., Corvera, C., Das, P., Enzinger, P.C., Enzler, T., Farjah, F., Gerdes, H., et al.: Esophageal and esophagogastric junction cancers, version 2.2023, nccn clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network 21(4), 393–422 (2023)

    Google Scholar 

  2. Becht, E., de Reyniès, A., Giraldo, N.A., Pilati, C., Buttard, B., Lacroix, L., Selves, J., Sautès-Fridman, C., Laurent-Puig, P., Fridman, W.H.: Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clinical cancer research 22(16), 4057–4066 (2016)

    Article  Google Scholar 

  3. Bożyk, A., Wojas-Krawczyk, K., Krawczyk, P., Milanowski, J.: Tumor microenvironment-a short review of cellular and interaction diversity. Biology 11(6),  929 (2022)

    Article  Google Scholar 

  4. Brown, K.M., Xue, A., Smith, R.C., Samra, J.S., Gill, A.J., Hugh, T.J.: Cancer-associated stroma reveals prognostic biomarkers and novel insights into the tumour microenvironment of colorectal cancer and colorectal liver metastases. Cancer Medicine 11(2), 492–506 (2022)

    Article  Google Scholar 

  5. Bussard, K.M., Mutkus, L., Stumpf, K., Gomez-Manzano, C., Marini, F.C.: Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Research 18, 1–11 (2016)

    Article  Google Scholar 

  6. Caputo, F., Santini, C., Bardasi, C., Cerma, K., Casadei-Gardini, A., Spallanzani, A., Andrikou, K., Cascinu, S., Gelsomino, F.: Braf-mutated colorectal cancer: clinical and molecular insights. International journal of molecular sciences 20(21),  5369 (2019)

    Article  Google Scholar 

  7. Chang, L., Chang, M., Chang, H.M., Chang, F.: Microsatellite instability: a predictive biomarker for cancer immunotherapy. Applied Immunohistochemistry & Molecular Morphology 26(2), e15–e21 (2018)

    Article  Google Scholar 

  8. Dedeurwaerdere, F., Claes, K.B., Van Dorpe, J., Rottiers, I., Van der Meulen, J., Breyne, J., Swaerts, K., Martens, G.: Comparison of microsatellite instability detection by immunohistochemistry and molecular techniques in colorectal and endometrial cancer. Scientific reports 11(1), 12880 (2021)

    Article  Google Scholar 

  9. Hou, W., He, Y., Yao, B., Yu, L., Yu, R., Gao, F., Wang, L.: Multi-scope analysis driven hierarchical graph transformer for whole slide image based cancer survival prediction. In: MICCAI (2023)

    Google Scholar 

  10. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T.J., Zou, J.: A visual–language foundation model for pathology image analysis using medical twitter. Nature medicine 29(9), 2307–2316 (2023)

    Article  Google Scholar 

  11. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. ICML (2018)

    Google Scholar 

  12. Kather, J.N., Pearson, A.T., Halama, N., Jäger, D., Krause, J., Loosen, S.H., Marx, A., Boor, P., Tacke, F., Neumann, U.P., et al.: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nature medicine 25(7), 1054–1056 (2019)

    Article  Google Scholar 

  13. Koncina, E., Haan, S., Rauh, S., Letellier, E.: Prognostic and predictive molecular biomarkers for colorectal cancer: updates and challenges. Cancers 12(2),  319 (2020)

    Article  Google Scholar 

  14. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: CVPR (2021)

    Google Scholar 

  15. Li, H., Yang, F., Zhao, Y., Xing, X., Zhang, J., Gao, M., Huang, J., Wang, L., Yao, J.: Dt-mil: deformable transformer for multi-instance learning on histopathological image. In: MICCAI. Springer (2021)

    Google Scholar 

  16. Li, H., Zhu, C., Zhang, Y., Sun, Y., Shui, Z., Kuang, W., Zheng, S., Yang, L.: Task-specific fine-tuning via variational information bottleneck for weakly-supervised pathology whole slide image classification. In: CVPR (2023)

    Google Scholar 

  17. Lin, T., Yu, Z., Hu, H., Xu, Y., Chen, C.W.: Interventional bag multi-instance learning on whole-slide pathological images. In: CVPR (2023)

    Google Scholar 

  18. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nature biomedical engineering 5(6), 555–570 (2021)

    Article  Google Scholar 

  19. Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: ISBI (2009)

    Google Scholar 

  20. Qu, L., Fu, K., Wang, M., Song, Z., et al.: The rise of ai language pathologists: Exploring two-level prompt learning for few-shot weakly-supervised whole slide image classification. Advances in Neural Information Processing Systems 36 (2024)

    Google Scholar 

  21. Qu, L., Yang, Z., Duan, M., Ma, Y., Wang, S., Wang, M., Song, Z.: Boosting whole slide image classification from the perspectives of distribution, correlation and magnification. In: ICCV (2023)

    Google Scholar 

  22. Saillard, C., Dubois, R., Tchita, O., Loiseau, N., Garcia, T., Adriansen, A., Carpentier, S., Reyre, J., Enea, D., von Loga, K., et al.: Validation of msintuit as an ai-based pre-screening tool for msi detection from colorectal cancer histology slides. Nature Communications 14(1),  6695 (2023)

    Article  Google Scholar 

  23. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., et al.: Transmil: Transformer based correlated multiple instance learning for whole slide image classification. Advances in neural information processing systems 34, 2136–2147 (2021)

    Google Scholar 

  24. Shimada, Y., Okuda, S., Watanabe, Y., Tajima, Y., Nagahashi, M., Ichikawa, H., Nakano, M., Sakata, J., Takii, Y., Kawasaki, T., et al.: Histopathological characteristics and artificial intelligence for predicting tumor mutational burden-high colorectal cancer. Journal of gastroenterology 56(6), 547–559 (2021)

    Article  Google Scholar 

  25. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 71(3), 209–249 (2021)

    Google Scholar 

  26. Tang, W., Huang, S., Zhang, X., Zhou, F., Zhang, Y., Liu, B.: Multiple instance learning framework with masked hard instance mining for whole slide image classification. In: ICCV (2023)

    Google Scholar 

  27. Tsai, P.C., Lee, T.H., Kuo, K.C., Su, F.Y., Lee, T.L.M., Marostica, E., Ugai, T., Zhao, M., Lau, M.C., Väyrynen, J.P., et al.: Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients. Nature communications 14(1),  2102 (2023)

    Article  Google Scholar 

  28. Zhang, H., Meng, Y., Zhao, Y., Qiao, Y., Yang, X., Coupland, S.E., Zheng, Y.: Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In: CVPR (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62101191), Shanghai Natural Science Foundation (Grant No. 21ZR1420800), and the Science and Technology Commission of Shanghai Municipality (Grant No. 22DZ2229004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Yun, B., Xie, X., Li, Q., Li, X., Wang, Y. (2024). Prompting Whole Slide Image Based Genetic Biomarker Prediction. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics