Skip to main content

Deep Volume Reconstruction from Multi-focus Microscopic Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Reconstructing 3D volumes from optical microscopic images is useful in important areas such as cellular analysis, cancer research, and drug development. However, existing techniques either require specialized hardware or extensive sample preprocessing. Recently, Yamaguchi et al. [20] proposed to solve this problem by just using a single stack of optical microscopic images with different focus settings and reconstructing a voxel-based representation of the observation using the classical iterative optimization method. Inspired by this result, this work aims to explore this method further using new state-of-the-art optimization techniques such as Deep Image Prior (DIP). Our analysis showcases the superiority of this approach over Yamaguchi et al. [20] in reconstruction quality, hard metrics, and robustness to noise on the synthetic data. Finally, we also demonstrate the effectiveness of our approach on real data, producing excellent reconstruction quality. Code available at: https://github.com/caiocj1/multifocus-3d-reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrahamsson, S., Chen, J., Hajj, B., Stallinga, S., Katsov, A.Y., Wisniewski, J., Mizuguchi, G., Soule, P., Mueller, F., Darzacq, C.D., et al.: Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nature Methods 10(1), 60–63 (2013)

    Article  Google Scholar 

  2. Barbano, R., Leuschner, J., Schmidt, M., Denker, A., Hauptmann, A., Maass, P., Jin, B.: An Educated Warm Start for Deep Image Prior-Based Micro CT Reconstruction. IEEE Transactions on Computational Imaging 8, 1210–1222 (2022)

    Article  Google Scholar 

  3. Calì, C., Agus, M., Kare, K., Boges, D.J., Lehväslaiho, H., Hadwiger, M., Magistretti, P.J.: 3d cellular reconstruction of cortical glia and parenchymal morphometric analysis from serial block-face electron microscopy of juvenile rat. Progress in neurobiology 183, 101696 (2019)

    Article  Google Scholar 

  4. Chen, Y., Shen, Q., White, S.L., Gokmen-Polar, Y., Badve, S., Goodman, L.J.: Three-dimensional imaging and quantitative analysis in clarity processed breast cancer tissues. Scientific Reports 9(1),  5624 (2019)

    Article  Google Scholar 

  5. Gong, K., Catana, C., Qi, J., Li, Q.: Pet image reconstruction using deep image prior. IEEE transactions on medical imaging 38(7), 1655–1665 (2018)

    Article  Google Scholar 

  6. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge university press (2003)

    Google Scholar 

  7. Hashimoto, F., Onishi, Y., Ote, K., Tashima, H., Yamaya, T.: Fully 3d implementation of the end-to-end deep image prior-based pet image reconstruction using block iterative algorithm. arXiv preprint arXiv:2212.11844 (2022)

  8. Horé, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th International Conference on Pattern Recognition. pp. 2366–2369 (2010). https://doi.org/10.1109/ICPR.2010.579

  9. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017)

    Google Scholar 

  10. Klacansky, P.: Open SciVis Datasets (December 2017), https://klacansky.com/open-scivis-datasets/, https://klacansky.com/open-scivis-datasets/

  11. Mertan, A., Duff, D.J., Unal, G.: Single image depth estimation: An overview. Digital Signal Processing p. 103441 (2022)

    Google Scholar 

  12. Nayar, S.K., Nakagawa, Y.: Shape from focus. IEEE Transactions on Pattern analysis and machine intelligence 16(8), 824–831 (1994)

    Article  Google Scholar 

  13. Peddie, C.J., Collinson, L.M.: Exploring the third dimension: Volume electron microscopy comes of age. Micron 61, 9–19 (2014).https://doi.org/10.1016/j.micron.2014.01.009, https://www.sciencedirect.com/science/article/pii/S0968432814000250

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. pp. 234–241. Springer (2015)

    Google Scholar 

  15. Suwajanakorn, S., Hernandez, C., Seitz, S.M.: Depth from focus with your mobile phone. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3497–3506 (2015)

    Google Scholar 

  16. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep Image Prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

    Google Scholar 

  17. Upla, P., Kim, S.J., Sampathkumar, P., Dutta, K., Cahill, S.M., Chemmama, I.E., Williams, R., Bonanno, J.B., Rice, W.J., Stokes, D.L., Cowburn, D., Almo, S.C., Sali, A., Rout, M.P., Fernandez-Martinez, J.: Molecular architecture of the major membrane ring component of the nuclear pore complex. Structure 25(3), 434–445 (2017).https://doi.org/10.1016/j.str.2017.01.006, https://www.sciencedirect.com/science/article/pii/S0969212617300060

  18. Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early stopping for deep image prior (2022)

    Google Scholar 

  19. Wenzel, C., Riefke, B., Gründemann, S., Krebs, A., Christian, S., Prinz, F., Osterland, M., Golfier, S., Räse, S., Ansari, N., Esner, M., Bickle, M., Pampaloni, F., Mattheyer, C., Stelzer, E.H., Parczyk, K., Prechtl, S., Steigemann, P.: 3d high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Experimental Cell Research 323(1), 131–143 (2014).https://doi.org/10.1016/j.yexcr.2014.01.017, https://www.sciencedirect.com/science/article/pii/S0014482714000263

  20. Yamaguchi, T., Nagahara, H., Morooka, K., Nakashima, Y., Uranishi, Y., Miyauchi, S., Kurazume, R.: 3D Image Reconstruction from Multi-focus Microscopic Images. In: Dabrowski, J.J., Rahman, A., Paul, M. (eds.) Image and Video Technology. pp. 73–85. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  21. Yoo, S., Ruiz, P., Huang, X., He, K., Ferrier, N.J., Hereld, M., Selewa, A., Daddysman, M., Scherer, N., Cossairt, O., Katsaggelos, A.K.: 3D Image Reconstruction from Multi-Focus Microscope: Axial Super-Resolution and Multiple-Frame Processing. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1453–1457 (2018).https://doi.org/10.1109/ICASSP.2018.8462234

  22. Zhou, K.C., Horstmeyer, R.: Diffraction tomography with a deep image prior. Optics express 28(9), 12872–12896 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

The part of this project were supported by JST AIP Acceleration Research JPMJCR23U4 and JSPS KAKENHI Grant Numbers JP23H05490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Kumawat .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1483 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azevedo, C., Santra, S., Kumawat, S., Nagahara, H., Morooka, K. (2024). Deep Volume Reconstruction from Multi-focus Microscopic Images. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics