Skip to main content

Diffusion as Sound Propagation: Physics-Inspired Model for Ultrasound Image Generation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15004))

  • 1434 Accesses

Abstract

Deep learning (DL) methods typically require large datasets to effectively learn data distributions. However, in the medical field, data is often limited in quantity, and acquiring labeled data can be costly. To mitigate this data scarcity, data augmentation techniques are commonly employed. Among these techniques, generative models play a pivotal role in expanding datasets. However, when it comes to ultrasound (US) imaging, the authenticity of generated data often diminishes due to the oversight of ultrasound physics.

We propose a novel approach to improve the quality of generated US images by introducing a physics-based diffusion model that is specifically designed for this image modality. The proposed model incorporates an US-specific scheduler scheme that mimics the natural behavior of sound wave propagation in ultrasound imaging. Our analysis demonstrates how the proposed method aids in modeling the attenuation dynamics in US imaging. We present both qualitative and quantitative results based on standard generative model metrics, showing that our proposed method results in overall more plausible images. Our code is available at github.com/marinadominguez/diffusion-for-us-images.

M. Domínguez and Y. Velikova—Shared first authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asgariandehkordi, H., Goudarzi, S., Basarab, A., Rivaz, H.: Deep ultrasound denoising using diffusion probabilistic models (2023)

    Google Scholar 

  2. Bi, Y., Jiang, Z., Clarenbach, R., Ghotbi, R., Karlas, A., Navab, N.: Mi-segnet: Mutual information-based us segmentation for unseen domain generalization (03 2023)

    Google Scholar 

  3. Detlefsen, N.S., Borovec, J., Schock, J., Harsh, A., Koker, T., Di Liello, L., Stancl, D., Quan, C., Grechkin, M., Falcon, W.: TorchMetrics - Measuring Reproducibility in PyTorch (Feb 2022). https://doi.org/10.21105/joss.04101, https://www.pytorchlightning.ai, repository code available at https://github.com/Lightning-AI/torchmetrics

  4. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis (2021)

    Google Scholar 

  5. Goudarzi, S., Rivaz, H.: Deep ultrasound denoising without clean data. In: Medical Imaging 2023: Ultrasonic Imaging and Tomography. vol. 12470, pp. 131–136. SPIE (2023)

    Google Scholar 

  6. Grogan, S., Mount, C.: Ultrasound physics and instrumentation (Mar 2023), updated 2023 Mar 27. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK570593/

  7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500 (Dec 2017)

  8. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models (2020)

    Google Scholar 

  9. Kazerouni, A., Aghdam, E.K., Heidari, M., Azad, R., Fayyaz, M., Hacihaliloglu, I., Merhof, D.: Diffusion models for medical image analysis: A comprehensive survey (2022)

    Google Scholar 

  10. Kebaili, A., Lapuyade-Lahorgue, J., Ruan, S.: Deep learning approaches for data augmentation in medical imaging: A review. Journal of Imaging (2023), correspondence: su.ruan@univ-rouen.fr

    Google Scholar 

  11. Kroenke, M., Eilers, C., Dimova, D., Köhler, M., Buschner, G., Schweiger, L., Konstantinidou, L., Makowski, M., Nagarajah, J., Navab, N., Weber, W., Wendler, T.: Tracked 3d ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry. PLOS ONE 17, e0268550 (07 2022). https://doi.org/10.1371/journal.pone.0268550

  12. Leclerc, S., Smistad, E., Pedrosa, J., Østvik, A., Cervenansky, F., Espinosa, F., Espeland, T., Berg, E.A.R., Jodoin, P.M., Grenier, T., Lartizien, C., D’hooge, J., Løvstakken, L., Bernard, O.: Deep learning for segmentation using an open large-scale dataset in 2d echocardiography. IEEE Transactions on Medical Imaging 38, 2198–2210 (2019), https://api.semanticscholar.org/CorpusID:73510235

  13. Luo, C.: Understanding diffusion models: A unified perspective (2022)

    Google Scholar 

  14. Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models (2021)

    Google Scholar 

  15. Rodriguez-Molares, A., Rindal, O., D’hooge, J., Masoy, S., Austeng, A., Lediju Bell, M., Torp, H.: The generalized contrast-to-noise ratio: A formal definition for lesion detectability. IEEE Trans Ultrason Ferroelectr Freq Control 67(4), 745–759 (Apr 2020). https://doi.org/10.1109/TUFFC.2019.2956855, epub 2019 Nov 29. PMID: 31796398; PMCID: PMC8354776

  16. van de Schaft, V., van Sloun, R.J.: Ultrasound speckle suppression and denoising using mri-derived normalizing flow priors. arXiv preprint arXiv:2112.13110 (2021)

  17. Seitzer, M.: pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/pytorch-fid (August 2020), version 0.3.0

  18. Stojanovski, D., Hermida, U., Lamata, P., Beqiri, A., Gomez, A.: Echo from noise: Synthetic ultrasound image generation using diffusion models for real image segmentation (2022)

    Google Scholar 

  19. Szabo, T.L.: Essentials of Ultrasound Imaging. Elsevier (2021)

    Google Scholar 

  20. Tang, F., Ding, J., Wang, L., Xian, M., Ning, C.: Multi-level global context cross consistency model for semi-supervised ultrasound image segmentation with diffusion model (2023)

    Google Scholar 

  21. Tirindelli, M., Eilers, C., Simson, W., Paschali, M., Azampour, M.F., Navab, N.: Rethinking ultrasound augmentation: A physics-inspired approach. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VIII 24. pp. 690–700. Springer (2021)

    Google Scholar 

  22. Velikova, Y., Azampour, M.F., Simson, W., Gonzalez Duque, V., Navab, N.: Lotus: learning to optimize task-based us representations. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 435–445. Springer Nature Switzerland Cham (2023)

    Google Scholar 

  23. Velikova, Y., Simson, W., Azampour, M.F., Paprottka, P., Navab, N.: Cactuss: Common anatomical ct-us space for us examinations. International Journal of Computer Assisted Radiology and Surgery pp. 1–9 (2024)

    Google Scholar 

  24. Wang, W., Bao, J., Zhou, W., Chen, D., Chen, D., Yuan, L., Li, H.: Semantic image synthesis via diffusion models (2022)

    Google Scholar 

  25. Zhang, L., Zhang, J.: Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss. PeerJ Computer Science 8,  e873 (2022)

    Article  Google Scholar 

  26. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgments

We thank the team at ImFusion (ImFusion GmbH, Munich, Germany) for providing their software to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Domínguez .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3309 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Domínguez, M., Velikova, Y., Navab, N., Azampour, M.F. (2024). Diffusion as Sound Propagation: Physics-Inspired Model for Ultrasound Image Generation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics