Skip to main content

Uncertainty-Aware Meta-weighted Optimization Framework for Domain-Generalized Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Accurate segmentation of echocardiograph images is essential for the diagnosis of cardiovascular diseases. Recent advances in deep learning have opened a possibility for automated cardiac image segmentation. However, the data-driven echocardiography segmentation schemes suffer from domain shift problems, since the ultrasonic image characteristics are largely affected by measurement conditions determined by device and probe specification. In order to overcome this problem, we propose a domain generalization method, utilizing a generative model for data augmentation. An acoustic content- and style-aware diffusion probabilistic model is proposed to synthesize echocardiography images of diverse cardiac anatomy and measurement conditions. In addition, a meta-learning-based spatial weighting scheme is introduced to prevent the network from training unreliable pixels of synthetic images, thereby achieving precise image segmentation. The proposed framework is thoroughly evaluated using both in-distribution and out-of-distribution echocardiography datasets and demonstrates outstanding performance compared to state-of-the-art methods. Code is available at https://github.com/Seokhwan-Oh/MLSW.

S.-H. Oh and G. Jung–Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C., Qin, C., Qiu, H., Tarroni, G., Duan, J., Bai, W., Rueckert, D.: Deep learning for cardiac image segmentation: a review. Frontiers in Cardiovascular Medicine 7,  25 (2020)

    Article  Google Scholar 

  2. Degerli, A., Zabihi, M., Kiranyaz, S., Hamid, T., Mazhar, R., Hamila, R., Gabbouj, M.: Early detection of myocardial infarction in low-quality echocardiography. IEEE Access 9, 34442–34453 (2021)

    Article  Google Scholar 

  3. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  4. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in neural information processing systems 33, 6840–6851 (2020)

    Google Scholar 

  5. Lang, R.M., Badano, L.P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., Flachskampf, F.A., Foster, E., Goldstein, S.A., Kuznetsova, T., et al.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the european association of cardiovascular imaging. European Heart Journal-Cardiovascular Imaging 16(3), 233–271 (2015)

    Article  Google Scholar 

  6. Leclerc, S., Smistad, E., Pedrosa, J., Østvik, A., Cervenansky, F., Espinosa, F., Espeland, T., Berg, E.A.R., Jodoin, P.M., Grenier, T., et al.: Deep learning for segmentation using an open large-scale dataset in 2d echocardiography. IEEE transactions on medical imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  7. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE transactions on image processing 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  8. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: Meta-learning for domain generalization. In: Proceedings of the AAAI conference on artificial intelligence. vol. 32 (2018)

    Google Scholar 

  9. Li, X., Dai, Y., Ge, Y., Liu, J., Shan, Y., Duan, L.Y.: Uncertainty modeling for out-of-distribution generalization. arXiv preprint arXiv:2202.03958 (2022)

  10. Ouyang, D., He, B., Ghorbani, A., Yuan, N., Ebinger, J., Langlotz, C.P., Heidenreich, P.A., Harrington, R.A., Liang, D.H., Ashley, E.A., et al.: Video-based ai for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)

    Article  Google Scholar 

  11. Rezaee, M.R., Van der Zwet, P.M., Lelieveldt, B., Van der Geest, R.J., Reiber, J.H.: A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE transactions on image processing 9(7), 1238–1248 (2000)

    Article  Google Scholar 

  12. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. pp. 234–241. Springer (2015)

    Google Scholar 

  14. Shankar, P.M.: Ultrasonic tissue characterization using a generalized nakagami model. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 48(6), 1716–1720 (2001)

    Article  Google Scholar 

  15. Song, H., Kim, M., Park, D., Shin, Y., Lee, J.G.: Learning from noisy labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning Systems (2022)

    Google Scholar 

  16. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  17. Stojanovski, D., Hermida, U., Lamata, P., Beqiri, A., Gomez, A.: Echo from noise: synthetic ultrasound image generation using diffusion models for real image segmentation. arXiv preprint arXiv:2305.05424 (2023)

  18. Tiago, C., Snare, S.R., Šprem, J., McLeod, K.: A domain translation framework with an adversarial denoising diffusion model to generate synthetic datasets of echocardiography images. IEEE Access 11, 17594–17602 (2023)

    Article  Google Scholar 

  19. Wang, M., Deng, W.: Deep visual domain adaptation: A survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  20. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions on image processing 7(3), 359–369 (1998)

    Article  MathSciNet  Google Scholar 

  21. Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A fourier-based framework for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14383–14392 (2021)

    Google Scholar 

  22. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  23. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

    Google Scholar 

  24. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. arXiv preprint arXiv:2104.02008 (2021)

  25. Zhou, S.K., Rueckert, D., Fichtinger, G.: Handbook of medical image computing and computer assisted intervention. Academic Press (2019)

    Google Scholar 

  26. Zuluaga, M.A., Biffi, B., Taylor, A.M., Schievano, S., Vercauteren, T., Ourselin, S.: Strengths and pitfalls of whole-heart atlas-based segmentation in congenital heart disease patients. In: Reconstruction, Segmentation, and Analysis of Medical Images: First International Workshops, RAMBO 2016 and HVSMR 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers 1. pp. 139–146. Springer (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Korea Medical Device Development Fund grant funded by the Korea government (Project Number: RS2020-KD000007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon-Min Bae .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

S-H. Oh and Y-M. Kim are under contracts with Ministry of Korea National Defense. Y-M. Kim, H-J. Lee and S-Y. Kim are under scholarship from the Korea Government Scholarship Program.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 782 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, SH. et al. (2024). Uncertainty-Aware Meta-weighted Optimization Framework for Domain-Generalized Medical Image Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics