Skip to main content

Forecasting Disease Progression with Parallel Hyperplanes in Longitudinal Retinal OCT

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Predicting future disease progression risk from medical images is challenging due to patient heterogeneity, and subtle or unknown imaging biomarkers. Moreover, deep learning (DL) methods for survival analysis are susceptible to image domain shifts across scanners. We tackle these issues in the task of predicting late dry Age-related Macular Degeneration (dAMD) onset from retinal OCT scans. We propose a novel DL method for survival prediction to jointly predict from the current scan a risk score, inversely related to time-to-conversion, and the probability of conversion within a time interval t. It uses a family of parallel hyperplanes generated by parameterizing the bias term as a function of t. In addition, we develop unsupervised losses based on intra-subject image pairs to ensure that risk scores increase over time and that future conversion predictions are consistent with AMD stage prediction using actual scans of future visits. Such losses enable data-efficient fine-tuning of the trained model on new unlabeled datasets acquired with a different scanner. Extensive evaluation on two large datasets acquired with different scanners resulted in a mean AUROCs of 0.82 for Dataset-1 and 0.83 for Dataset-2, across prediction intervals of 6, 12 and 24 months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banerjee, I., de Sisternes, L., Hallak, J.A., Leng, T., Osborne, A., Rosenfeld, P.J., Gregori, G., Durbin, M., Rubin, D.: Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal sd-oct imaging biomarkers. Scientific reports 10(1), 15434 (2020)

    Article  Google Scholar 

  2. Emre, T., Chakravarty, A., Rivail, A., Riedl, S., Schmidt-Erfurth, U., Bogunović, H.: Tinc: Temporally informed non-contrastive learning for disease progression modeling in retinal oct volumes. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 625–634. Springer (2022)

    Google Scholar 

  3. Heier, J.S., Lad, E.M., Holz, F.G., Rosenfeld, P.J., Guymer, R.H., Boyer, D., Grossi, F., Baumal, C.R., Korobelnik, J.F., Slakter, J.S., Waheed, N.K., Metlapally, R., Pearce, I., Steinle, N., Francone, A.A., Hu, A., Lally, D.R., Deschatelets, P., Francois, C., Bliss, C., Staurenghi, G., Monés, J., Singh, R.P., Ribeiro, R., Wykoff, C.C.: Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. The Lancet 402(10411), 1434–1448 (oct 2023)

    Google Scholar 

  4. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC medical research methodology 18(1), 1–12 (2018)

    Article  Google Scholar 

  5. Khanani, A.M., Patel, S.S., Staurenghi, G., Tadayoni, R., Danzig, C.J., Eichenbaum, D.A., Hsu, J., Wykoff, C.C., Heier, J.S., Lally, D.R., Monés, J., Nielsen, J.S., Sheth, V.S., Kaiser, P.K., Clark, J., Zhu, L., Patel, H., Tang, J., Desai, D., Jaffe, G.J.: Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial. The Lancet 402(10411), 1449–1458 (oct 2023)

    Google Scholar 

  6. Lachinov, D., Chakravarty, A., Grechenig, C., Schmidt-Erfurth, U., Bogunović, H.: Learning spatio-temporal model of disease progression with neuralodes from longitudinal volumetric data. IEEE Transactions on Medical Imaging (2023)

    Google Scholar 

  7. Lad, E.M., Sleiman, K., Banks, D.L., Hariharan, S., Clemons, T., Herrmann, R., Dauletbekov, D., Giani, A., Chong, V., Chew, E.Y., et al.: Machine learning oct predictors of progression from intermediate age-related macular degeneration to geographic atrophy and vision loss. Ophthalmology Science 2(2), 100160 (2022)

    Article  Google Scholar 

  8. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11976–11986 (2022)

    Google Scholar 

  9. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  10. Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of mri scale standardization. IEEE transactions on medical imaging 19(2), 143–150 (2000)

    Article  Google Scholar 

  11. Rivail, A., Schmidt-Erfurth, U., Vogl, W.D., Waldstein, S.M., Riedl, S., Grechenig, C., Wu, Z., Bogunovic, H.: Modeling disease progression in retinal octs with longitudinal self-supervised learning. In: Predictive Intelligence in Medicine: Second International Workshop, PRIME 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings 2. pp. 44–52. Springer (2019)

    Google Scholar 

  12. Rivail, A., Vogl, W.D., Riedl, S., Grechenig, C., Coulibaly, L.M., Reiter, G.S., Guymer, R.H., Wu, Z., Schmidt-Erfurth, U., Bogunović, H.: Deep survival modeling of longitudinal retinal oct volumes for predicting the onset of atrophy in patients with intermediate amd. Biomedical Optics Express 14(6), 2449–2464 (2023)

    Article  Google Scholar 

  13. Russakoff, D.B., Lamin, A., Oakley, J.D., Dubis, A.M., Sivaprasad, S.: Deep learning for prediction of amd progression: a pilot study. Investigative ophthalmology & visual science 60(2), 712–722 (2019)

    Article  Google Scholar 

  14. Schmidt-Erfurth, U., Waldstein, S.M., Klimscha, S., Sadeghipour, A., Hu, X., Gerendas, B.S., Osborne, A., Bogunović, H.: Prediction of individual disease conversion in early amd using artificial intelligence. Investigative ophthalmology & visual science 59(8), 3199–3208 (2018)

    Article  Google Scholar 

  15. de Sisternes, L., Simon, N., Tibshirani, R., Leng, T., Rubin, D.L.: Quantitative sd-oct imaging biomarkers as indicators of age-related macular degeneration progression. Investigative ophthalmology & visual science 55(11), 7093–7103 (2014)

    Article  Google Scholar 

  16. Sleiman, K., Veerappan, M., Winter, K.P., McCall, M.N., Yiu, G., Farsiu, S., Chew, E.Y., Clemons, T., Toth, C.A., Wong, W., et al.: Optical coherence tomography predictors of risk for progression to non-neovascular atrophic age-related macular degeneration. Ophthalmology 124(12), 1764–1777 (2017)

    Article  Google Scholar 

  17. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE winter conference on applications of computer vision (WACV). pp. 464–472. IEEE (2017)

    Google Scholar 

  18. Sutton, J., Menten, M.J., Riedl, S., Bogunović, H., Leingang, O., Anders, P., Hagag, A.M., Waldstein, S., Wilson, A., Cree, A.J., et al.: Developing and validating a multivariable prediction model which predicts progression of intermediate to late age-related macular degeneration-the pinnacle trial protocol. Eye 37(6), 1275–1283 (2023)

    Article  Google Scholar 

  19. Tang, W., Ma, J., Mei, Q., Zhu, J.: Soden: A scalable continuous-time survival model through ordinary differential equation networks. The Journal of Machine Learning Research 23(1), 1516–1544 (2022)

    MathSciNet  Google Scholar 

  20. Wong, W.L., Su, X., Li, X., Cheung, C.M.G., Klein, R., Cheng, C.Y., Wong, T.Y.: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health 2(2), e106–e116 (2014)

    Article  Google Scholar 

  21. Wulczyn, E., Steiner, D.F., Xu, Z., Sadhwani, A., Wang, H., Flament-Auvigne, I., Mermel, C.H., Chen, P.H.C., Liu, Y., Stumpe, M.C.: Deep learning-based survival prediction for multiple cancer types using histopathology images. PloS one 15(6), e0233678 (2020)

    Article  Google Scholar 

  22. Yim, J., Chopra, R., Spitz, T., Winkens, J., Obika, A., Kelly, C., Askham, H., Lukic, M., Huemer, J., Fasler, K., et al.: Predicting conversion to wet age-related macular degeneration using deep learning. Nature Medicine 26(6), 892–899 (2020)

    Article  Google Scholar 

  23. Zeghlache, R., Conze, P.H., Daho, M.E.H., Li, Y., Le Boité, H., Tadayoni, R., Massin, P., Cochener, B., Brahim, I., Quellec, G., et al.: Lmt: Longitudinal mixing training, a framework to predict disease progression from a single image. In: International Workshop on Machine Learning in Medical Imaging. pp. 22–32. Springer (2023)

    Google Scholar 

Download references

Acknowledgments

This research was funded in part by the Austrian Science Fund (FWF) [10.55776/FG9], and Welcome Trust Collaborative Award Ref. 210572/Z/18/Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunava Chakravarty .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 73 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakravarty, A. et al. (2024). Forecasting Disease Progression with Parallel Hyperplanes in Longitudinal Retinal OCT. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72086-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72085-7

  • Online ISBN: 978-3-031-72086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics