Abstract
Predicting future disease progression risk from medical images is challenging due to patient heterogeneity, and subtle or unknown imaging biomarkers. Moreover, deep learning (DL) methods for survival analysis are susceptible to image domain shifts across scanners. We tackle these issues in the task of predicting late dry Age-related Macular Degeneration (dAMD) onset from retinal OCT scans. We propose a novel DL method for survival prediction to jointly predict from the current scan a risk score, inversely related to time-to-conversion, and the probability of conversion within a time interval t. It uses a family of parallel hyperplanes generated by parameterizing the bias term as a function of t. In addition, we develop unsupervised losses based on intra-subject image pairs to ensure that risk scores increase over time and that future conversion predictions are consistent with AMD stage prediction using actual scans of future visits. Such losses enable data-efficient fine-tuning of the trained model on new unlabeled datasets acquired with a different scanner. Extensive evaluation on two large datasets acquired with different scanners resulted in a mean AUROCs of 0.82 for Dataset-1 and 0.83 for Dataset-2, across prediction intervals of 6, 12 and 24 months.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banerjee, I., de Sisternes, L., Hallak, J.A., Leng, T., Osborne, A., Rosenfeld, P.J., Gregori, G., Durbin, M., Rubin, D.: Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal sd-oct imaging biomarkers. Scientific reports 10(1), 15434 (2020)
Emre, T., Chakravarty, A., Rivail, A., Riedl, S., Schmidt-Erfurth, U., Bogunović, H.: Tinc: Temporally informed non-contrastive learning for disease progression modeling in retinal oct volumes. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 625–634. Springer (2022)
Heier, J.S., Lad, E.M., Holz, F.G., Rosenfeld, P.J., Guymer, R.H., Boyer, D., Grossi, F., Baumal, C.R., Korobelnik, J.F., Slakter, J.S., Waheed, N.K., Metlapally, R., Pearce, I., Steinle, N., Francone, A.A., Hu, A., Lally, D.R., Deschatelets, P., Francois, C., Bliss, C., Staurenghi, G., Monés, J., Singh, R.P., Ribeiro, R., Wykoff, C.C.: Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. The Lancet 402(10411), 1434–1448 (oct 2023)
Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC medical research methodology 18(1), 1–12 (2018)
Khanani, A.M., Patel, S.S., Staurenghi, G., Tadayoni, R., Danzig, C.J., Eichenbaum, D.A., Hsu, J., Wykoff, C.C., Heier, J.S., Lally, D.R., Monés, J., Nielsen, J.S., Sheth, V.S., Kaiser, P.K., Clark, J., Zhu, L., Patel, H., Tang, J., Desai, D., Jaffe, G.J.: Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial. The Lancet 402(10411), 1449–1458 (oct 2023)
Lachinov, D., Chakravarty, A., Grechenig, C., Schmidt-Erfurth, U., Bogunović, H.: Learning spatio-temporal model of disease progression with neuralodes from longitudinal volumetric data. IEEE Transactions on Medical Imaging (2023)
Lad, E.M., Sleiman, K., Banks, D.L., Hariharan, S., Clemons, T., Herrmann, R., Dauletbekov, D., Giani, A., Chong, V., Chew, E.Y., et al.: Machine learning oct predictors of progression from intermediate age-related macular degeneration to geographic atrophy and vision loss. Ophthalmology Science 2(2), 100160 (2022)
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11976–11986 (2022)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2018)
Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of mri scale standardization. IEEE transactions on medical imaging 19(2), 143–150 (2000)
Rivail, A., Schmidt-Erfurth, U., Vogl, W.D., Waldstein, S.M., Riedl, S., Grechenig, C., Wu, Z., Bogunovic, H.: Modeling disease progression in retinal octs with longitudinal self-supervised learning. In: Predictive Intelligence in Medicine: Second International Workshop, PRIME 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings 2. pp. 44–52. Springer (2019)
Rivail, A., Vogl, W.D., Riedl, S., Grechenig, C., Coulibaly, L.M., Reiter, G.S., Guymer, R.H., Wu, Z., Schmidt-Erfurth, U., Bogunović, H.: Deep survival modeling of longitudinal retinal oct volumes for predicting the onset of atrophy in patients with intermediate amd. Biomedical Optics Express 14(6), 2449–2464 (2023)
Russakoff, D.B., Lamin, A., Oakley, J.D., Dubis, A.M., Sivaprasad, S.: Deep learning for prediction of amd progression: a pilot study. Investigative ophthalmology & visual science 60(2), 712–722 (2019)
Schmidt-Erfurth, U., Waldstein, S.M., Klimscha, S., Sadeghipour, A., Hu, X., Gerendas, B.S., Osborne, A., Bogunović, H.: Prediction of individual disease conversion in early amd using artificial intelligence. Investigative ophthalmology & visual science 59(8), 3199–3208 (2018)
de Sisternes, L., Simon, N., Tibshirani, R., Leng, T., Rubin, D.L.: Quantitative sd-oct imaging biomarkers as indicators of age-related macular degeneration progression. Investigative ophthalmology & visual science 55(11), 7093–7103 (2014)
Sleiman, K., Veerappan, M., Winter, K.P., McCall, M.N., Yiu, G., Farsiu, S., Chew, E.Y., Clemons, T., Toth, C.A., Wong, W., et al.: Optical coherence tomography predictors of risk for progression to non-neovascular atrophic age-related macular degeneration. Ophthalmology 124(12), 1764–1777 (2017)
Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE winter conference on applications of computer vision (WACV). pp. 464–472. IEEE (2017)
Sutton, J., Menten, M.J., Riedl, S., Bogunović, H., Leingang, O., Anders, P., Hagag, A.M., Waldstein, S., Wilson, A., Cree, A.J., et al.: Developing and validating a multivariable prediction model which predicts progression of intermediate to late age-related macular degeneration-the pinnacle trial protocol. Eye 37(6), 1275–1283 (2023)
Tang, W., Ma, J., Mei, Q., Zhu, J.: Soden: A scalable continuous-time survival model through ordinary differential equation networks. The Journal of Machine Learning Research 23(1), 1516–1544 (2022)
Wong, W.L., Su, X., Li, X., Cheung, C.M.G., Klein, R., Cheng, C.Y., Wong, T.Y.: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health 2(2), e106–e116 (2014)
Wulczyn, E., Steiner, D.F., Xu, Z., Sadhwani, A., Wang, H., Flament-Auvigne, I., Mermel, C.H., Chen, P.H.C., Liu, Y., Stumpe, M.C.: Deep learning-based survival prediction for multiple cancer types using histopathology images. PloS one 15(6), e0233678 (2020)
Yim, J., Chopra, R., Spitz, T., Winkens, J., Obika, A., Kelly, C., Askham, H., Lukic, M., Huemer, J., Fasler, K., et al.: Predicting conversion to wet age-related macular degeneration using deep learning. Nature Medicine 26(6), 892–899 (2020)
Zeghlache, R., Conze, P.H., Daho, M.E.H., Li, Y., Le Boité, H., Tadayoni, R., Massin, P., Cochener, B., Brahim, I., Quellec, G., et al.: Lmt: Longitudinal mixing training, a framework to predict disease progression from a single image. In: International Workshop on Machine Learning in Medical Imaging. pp. 22–32. Springer (2023)
Acknowledgments
This research was funded in part by the Austrian Science Fund (FWF) [10.55776/FG9], and Welcome Trust Collaborative Award Ref. 210572/Z/18/Z.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chakravarty, A. et al. (2024). Forecasting Disease Progression with Parallel Hyperplanes in Longitudinal Retinal OCT. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-72086-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72085-7
Online ISBN: 978-3-031-72086-4
eBook Packages: Computer ScienceComputer Science (R0)