Skip to main content

Multi-modality 3D CNN Transformer for Assisting Clinical Decision in Intracerebral Hemorrhage

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15005))

  • 1609 Accesses

Abstract

Intracerebral hemorrhage (ICH) is a cerebrovascular disease with high mortality and morbidity rates. Early-stage ICH patients often lack clear surgical indications, which is quite challenging for neurosurgeons to make treatment decisions. Currently, early treatment decisions for ICH primarily rely on the clinical experience of neurosurgeons. Although there have been attempts to combine local CT imaging with clinical data for decision-making, these approaches fail to provide deep semantic analysis and do not fully leverage the synergistic effects between different modalities. To address this issue, this paper introduces a novel multi-modality predictive model that combines CT images and clinical data to provide reliable treatment decisions for ICH patients. Specifically, this model employs a combination of 3D CNN and Transformer to analyze patients’ brain CT scans, effectively capturing the 3D spatial information of intracranial hematomas and surrounding brain tissue. In addition, it utilizes a contrastive language-image pre-training (CLIP) module to extract demographic features and important clinical data and integrates with CT imaging data through a cross-attention mechanism. Furthermore, a novel CNN-based multilayer perceptron (MLP) layer is designed to enhance the understanding of the 3D spatial features. Extensive experiments conducted on real clinical datasets demonstrate that the proposed method significantly improves the accuracy of treatment decisions compared to existing state-of-the-art methods. Code is available at https://github.com/Henry-Xiong/3DCT-ICH.

Z. Xiong and K. Zhao—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adeoye, O., Broderick, J.P.: Advances in the management of intracerebral hemorrhage. Nature Reviews Neurology 6(11), 593–601 (2010)

    Article  Google Scholar 

  2. Borsos, B., Allaart, C.G., van Halteren, A.: Predicting stroke outcome: A case for multimodal deep learning methods with tabular and ct perfusion data. Artificial Intelligence in Medicine 147, 102719 (2024)

    Article  Google Scholar 

  3. Boutet, A., Madhavan, R., Elias, G.J., Joel, S.E., Gramer, R., Ranjan, M., Paramanandam, V., Xu, D., Germann, J., Loh, A., et al.: Predicting optimal deep brain stimulation parameters for parkinson’s disease using functional mri and machine learning. Nature communications 12(1),  3043 (2021)

    Article  Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: European conference on computer vision. pp. 213–229. Springer (2020)

    Google Scholar 

  5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

    Google Scholar 

  7. He, S., Grant, P.E., Ou, Y.: Global-local transformer for brain age estimation. IEEE transactions on medical imaging 41(1), 213–224 (2021)

    Article  Google Scholar 

  8. Heit, J.J., Iv, M., Wintermark, M.: Imaging of intracranial hemorrhage. Journal of stroke 19(1),  11 (2017)

    Article  Google Scholar 

  9. Ji, R., Shen, H., Pan, Y., Wang, P., Liu, G., Wang, Y., Li, H., Zhao, X., Wang, Y.: A novel risk score to predict 1-year functional outcome after intracerebral hemorrhage and comparison with existing scores. Critical Care 17, 1–10 (2013)

    Article  Google Scholar 

  10. Keep, R.F., Hua, Y., Xi, G.: Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. The Lancet Neurology 11(8), 720–731 (2012)

    Article  Google Scholar 

  11. Li, L., Poon, M.T., Samarasekera, N.E., Perry, L.A., Moullaali, T.J., Rodrigues, M.A., Loan, J.J., Stephen, J., Lerpiniere, C., Tuna, M.A., et al.: Risks of recurrent stroke and all serious vascular events after spontaneous intracerebral haemorrhage: pooled analyses of two population-based studies. The Lancet Neurology 20(6), 437–447 (2021)

    Article  Google Scholar 

  12. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 10012–10022 (2021)

    Google Scholar 

  13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  14. Lu, Z., Xie, H., Liu, C., Zhang, Y.: Bridging the gap between vision transformers and convolutional neural networks on small datasets. Advances in Neural Information Processing Systems 35, 14663–14677 (2022)

    Google Scholar 

  15. Ma, W., Chen, C., Abrigo, J., Mak, C.H.K., Gong, Y., Chan, N.Y., Han, C., Liu, Z., Dou, Q.: Treatment outcome prediction for intracerebral hemorrhage via generative prognostic model with imaging and tabular data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 715–725. Springer (2023)

    Google Scholar 

  16. Magid-Bernstein, J., Girard, R., Polster, S., Srinath, A., Romanos, S., Awad, I.A., Sansing, L.H.: Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circulation research 130(8), 1204–1229 (2022)

    Article  Google Scholar 

  17. Nguyen, H.H., Saarakkala, S., Blaschko, M.B., Tiulpin, A.: Climat: Clinically-inspired multi-agent transformers for knee osteoarthritis trajectory forecasting. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). pp. 1–5. IEEE (2022)

    Google Scholar 

  18. de Oliveira Manoel, A.L.: Surgery for spontaneous intracerebral hemorrhage. Critical Care 24(1),  45 (2020)

    Article  Google Scholar 

  19. Pölsterl, S., Wolf, T.N., Wachinger, C.: Combining 3d image and tabular data via the dynamic affine feature map transform. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part V 24. pp. 688–698. Springer (2021)

    Google Scholar 

  20. Puy, L., Parry-Jones, A.R., Sandset, E.C., Dowlatshahi, D., Ziai, W., Cordonnier, C.: Intracerebral haemorrhage. Nature Reviews Disease Primers 9(1),  14 (2023)

    Article  Google Scholar 

  21. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language supervision. In: International conference on machine learning. pp. 8748–8763. PMLR (2021)

    Google Scholar 

  22. Shan, X., Li, X., Ge, R., Wu, S., Elazab, A., Zhu, J., Zhang, L., Jia, G., Xiao, Q., Wan, X., et al.: Gcs-ichnet: Assessment of intracerebral hemorrhage prognosis using self-attention with domain knowledge integration. In: 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). pp. 2217–2222. IEEE (2023)

    Google Scholar 

  23. Wang, K., Liu, Q., Mo, S., Zheng, K., Li, X., Li, J., Chen, S., Tong, X., Cao, Y., Li, Z., et al.: A decision tree model to help treatment decision-making for severe spontaneous intracerebral hemorrhage. International Journal of Surgery pp. 10–1097 (2023)

    Google Scholar 

  24. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: Transbts: Multimodal brain tumor segmentation using transformer. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24. pp. 109–119. Springer (2021)

    Google Scholar 

  25. Zhou, H.Y., Yu, Y., Wang, C., Zhang, S., Gao, Y., Pan, J., Shao, J., Lu, G., Zhang, K., Li, W.: A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics. Nature Biomedical Engineering pp. 1–13 (2023)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 62102133, the High-level and Urgently Needed Overseas Talent Programs of Jiangxi Province under Grant No. 20232BCJ25026, the Natural Science Foundation of Henan Province under Grant No. 242300421402, the Kaifeng Major Science and Technology Project under Grant No. 21ZD011, the Ji’an Finance and Science Foundation under Grants No. 20211-085454, 20222-151746, 20222-151704, Ji’an key core common technology “reveal the list” Project under Grant No. 2022-1, Science and Technology Fund Project of Guizhou Provincial Health Commission No. gzwkj2021-198, Quanzhou Science and Technology Plan Project No. 2024NY040, the Seed Fund Project of the Second Affiliated Hospital of Fujian Medical University No. 2021MP01 and the Henan University Graduate Student Excellence Program No. SYLYC2023135.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengbo Chen or Fuxing Yang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, Z. et al. (2024). Multi-modality 3D CNN Transformer for Assisting Clinical Decision in Intracerebral Hemorrhage. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72086-4_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72085-7

  • Online ISBN: 978-3-031-72086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics