Skip to main content

Differentiable Score-Based Likelihoods: Learning CT Motion Compensation from Clean Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Motion artifacts can compromise the diagnostic value of computed tomography (CT) images. Motion correction approaches require a per-scan estimation of patient-specific motion patterns. In this work, we train a score-based model to act as a probability density estimator for clean head CT images. Given the trained model, we quantify the deviation of a given motion-affected CT image from the ideal distribution through likelihood computation. We demonstrate that the likelihood can be utilized as a surrogate metric for motion artifact severity in the CT image facilitating the application of an iterative, gradient-based motion compensation algorithm. By optimizing the underlying motion parameters to maximize likelihood, our method effectively reduces motion artifacts, bringing the image closer to the distribution of motion-free scans. Our approach achieves comparable performance to state-of-the-art methods while eliminating the need for a representative data set of motion-affected samples. This is particularly advantageous in real-world applications, where patient motion patterns may exhibit unforeseen variability, ensuring robustness without implicit assumptions about recoverable motion types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/rtqichen/torchdiffeq.

References

  1. Aichert, A., et al.: Epipolar consistency in transmission imaging. IEEE Trans. Med. Imaging 34(11), 2205–2219 (2015)

    Article  Google Scholar 

  2. Berger, M., et al.: Motion compensation for cone-beam CT using Fourier consistency conditions. Phys. Med. Biol. 62(17), 7181 (2017)

    Article  Google Scholar 

  3. Caterini, A.L., Loaiza-Ganem, G.: Entropic issues in likelihood-based OOD detection. In: I (Still) Can’t Believe It’s Not Better! Workshop at NeurIPS 2021, pp. 21–26. PMLR (2022)

    Google Scholar 

  4. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  5. Chilamkurthy, S., et al.: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet 392(10162), 2388–2396 (2018). http://headctstudy.qure.ai/dataset

  6. Choi, J.H., et al.: Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. numerical model-based optimization. Med. Phys. 40(9), 091905 (2013)

    Google Scholar 

  7. Choi, S., Lee, H., Lee, H., Lee, M.: Projection regret: reducing background bias for novelty detection via diffusion models. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  8. Denouden, T., Salay, R., Czarnecki, K., Abdelzad, V., Phan, B., Vernekar, S.: Improving Reconstruction Autoencoder Out-of-distribution Detection with Mahalanobis Distance (2018). arXiv preprint arXiv:1812.02765

  9. Goodier, J., Campbell, N.D.: Likelihood-based Out-of-Distribution Detection with Denoising Diffusion Probabilistic Models (2023). arXiv preprint arXiv:2310.17432

  10. Graham, M.S., et al.: Unsupervised 3D out-of-distribution detection with latent diffusion models. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. MICCAI 2023. LNCS, vol. 14220. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_43

  11. Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: FFJORD: free-form continuous dynamics for scalable reversible generative models. In: International Conference on Learning Representations (2018)

    Google Scholar 

  12. Huang, H., et al.: Reference-free learning-based similarity metric for motion compensation in cone-beam CT. Phys. Med. Biol. 67(12), 125020 (2022)

    Article  Google Scholar 

  13. Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 18(3), 1059–1076 (1989)

    Article  MathSciNet  Google Scholar 

  14. Kingston, A., Sakellariou, A., Varslot, T., Myers, G., Sheppard, A.: Reliable automatic alignment of tomographic projection data by passive auto-focus. Med. Phys. 38(9), 4934–4945 (2011)

    Article  Google Scholar 

  15. Köthe, U.: A review of change of variable formulas for generative modeling (2023). arXiv preprint arXiv:2308.02652

  16. Levac, B., Kumar, S., Jalal, A., Tamir, J.I.: Accelerated motion correction with deep generative diffusion models. Magn. Reson. Med. 92(2), 853–868 (2024)

    Google Scholar 

  17. Linmans, J., Raya, G., van der Laak, J., Litjens, G.: Diffusion models for out-of-distribution detection in digital pathology. Med. Image Anal. 93, 103088 (2024)

    Article  Google Scholar 

  18. Maier, J., et al.: Inertial measurements for motion compensation in weight-bearing cone-beam CT of the knee. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_2

    Chapter  Google Scholar 

  19. Müller, J.P., Baugh, M., Tan, J., Dombrowski, M., Kainz, B.: Confidence-aware and self-supervised image anomaly localisation. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. LNCS, vol. 14291. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44336-7_18

  20. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? In: International Conference on Learning Representations (2019)

    Google Scholar 

  21. Preuhs, A., et al.: Appearance learning for image-based motion estimation in tomography. IEEE Trans. Med. Imaging 39(11), 3667–3678 (2020)

    Article  Google Scholar 

  22. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  23. Sisniega, A., Stayman, J.W., Yorkston, J., Siewerdsen, J., Zbijewski, W.: Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys. Med. Biol. 62(9), 3712 (2017)

    Article  Google Scholar 

  24. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: International Conference on Learning Representations (2021)

    Google Scholar 

  25. Thies, M., et al.: Gradient-based geometry learning for fan-beam CT reconstruction. Phys. Med. Biol. 68(20), 205004 (2023)

    Article  Google Scholar 

  26. Thies, M., et al.: A gradient-based approach to fast and accurate head motion compensation in cone-beam CT (2024). arXiv preprint arXiv:2401.09283

  27. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. MICCAI 2022. LNCS, vol. 13438. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

  28. Xiao, Z., Yan, Q., Amit, Y.: Likelihood regret: an out-of-distribution detection score for variational auto-encoder. Adv. Neural. Inf. Process. Syst. 33, 20685–20696 (2020)

    Google Scholar 

  29. Yu, H., Wang, G.: Data consistency based rigid motion artifact reduction in fan-beam CT. IEEE Trans. Med. Imaging 26(2), 249–260 (2007)

    Article  Google Scholar 

  30. Zheng, H., Nie, W., Vahdat, A., Azizzadenesheli, K., Anandkumar, A.: Fast sampling of diffusion models via operator learning. In: NeurIPS 2022 Workshop on Score-Based Methods (2022)

    Google Scholar 

  31. Zhou, Y.: Rethinking reconstruction autoencoder-based out-of-distribution detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7379–7387 (2022)

    Google Scholar 

  32. Zisselman, E., Tamar, A.: Deep residual flow for out of distribution detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13994–14003 (2020)

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Grant No. 810316). The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center of the Friedrich-Alexander-Universität Erlangen-Nürnberg. The hardware is funded by the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareike Thies .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2171 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thies, M. et al. (2024). Differentiable Score-Based Likelihoods: Learning CT Motion Compensation from Clean Images. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics