Skip to main content

Dynamic Hybrid Unrolled Multi-scale Network for Accelerated MRI Reconstruction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15007))

  • 1808 Accesses

Abstract

In accelerated magnetic resonance imaging (MRI) reconstruction, the anatomy of a patient is recovered from a set of under-sampled measurements. Currently, unrolled hybrid architectures, incorporating both the beneficial bias of convolutions with the power of Transformers have been proven to be successful in solving this ill-posed inverse problem. The multi-scale strategy of the intra-cascades and that of the inter-cascades are used to decrease the high compute cost of Transformers and to rectify the spectral bias of Transformers, respectively. In this work, we proposed a dynamic Hybrid Unrolled Multi-Scale Network (dHUMUS-Net) by incorporating the two multi-scale strategies. A novel Optimal Scale Estimation Network is presented to dynamically create or choose the multi-scale Transformer-based modules in all cascades of dHUMUS-Net. Our dHUMUS-Net achieves significant improvements over the state-of-the-art methods on the publicly available fastMRI dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here, “Hybrid” means the a Transformer-convolutional hybrid operations. Since the work of Xiao et al. [27], Transformers have been bound with convolutions for vision tasks.

References

  1. Chen, E.Z., Wang, P., Chen, X., Chen, T., Sun, S.: Pyramid convolutional RNN for MRI image reconstruction. IEEE Trans. Med. Imaging 41(8), 2033–2047 (2022)

    Article  Google Scholar 

  2. Chen, Y., et al.: AI-based reconstruction for fast MRI-a systematic review and meta-analysis. Proc. IEEE 110(2), 224–245 (2022)

    Article  Google Scholar 

  3. Dolz, J., Desrosiers, C., Wang, L., Yuan, J., Shen, D., Ayed, I.B.: Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation. Comput. Med. Imaging Graph. 79, 101660 (2020)

    Article  Google Scholar 

  4. Fabian, Z., Tinaz, B., Soltanolkotabi, M.: HUMUS-Net: hybrid unrolled multi-scale network architecture for accelerated MRI reconstruction. Adv. Neural. Inf. Process. Syst. 35, 25306–25319 (2022)

    Google Scholar 

  5. Fan, J., Cao, X., Xue, Z., Yap, P.-T., Shen, D.: Adversarial similarity network for evaluating image alignment in deep learning based registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 739–746. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_83

    Chapter  Google Scholar 

  6. Guo, P., Mei, Y., Zhou, J., Jiang, S., Patel, V.M.: ReconFormer: accelerated MRI econstruction using recurrent Transformer. IEEE Trans. Med. Imaging 43(1), 582–593 (2024)

    Article  Google Scholar 

  7. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  8. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  9. Hu, D., Zhang, Y., Zhu, J., Liu, Q., Chen, Y.: TRANS-Net: transformer-enhanced residual-error alternative suppression network for MRI reconstruction. IEEE Trans. Instrum. Meas. 71, 1–13 (2022)

    Google Scholar 

  10. Huang, J., et al.: Swin transformer for fast MRI. Neurocomputing 493, 281–304 (2022)

    Article  Google Scholar 

  11. Hyun, C.M., Kim, H.P., Lee, S.M., Lee, S., Seo, J.K.: Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018)

    Article  Google Scholar 

  12. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  13. Li, X.-X., Chen, Z., Lou, X.-J., Yang, J., Chen, Y., Shen, D.: Multimodal MRI acceleration via deep cascading networks with peer-layer-wise dense connections. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 329–339. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_32

    Chapter  Google Scholar 

  14. Liang, D., Cheng, J., Ke, Z., Ying, L.: Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process. Mag. 37(1), 141–151 (2020)

    Article  Google Scholar 

  15. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using Swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)

    Google Scholar 

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  17. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  18. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2019)

    Article  Google Scholar 

  19. Rahaman, N., et al.: On the spectral bias of neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 5301–5310 (2019)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018)

    Article  Google Scholar 

  22. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7

    Chapter  Google Scholar 

  23. Wang, J., Chen, Y., Chakraborty, R., Yu, S.X.: Orthogonal convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11502–11512 (2020)

    Google Scholar 

  24. Wang, Q., Guo, G.: DSA-face: diverse and sparse attentions for face recognition robust to pose variation and occlusion. IEEE Trans. Inf. Forensics Secur. 16, 4534–4543 (2021)

    Article  Google Scholar 

  25. Wang, S., et al.: DeepcomplexMRI: exploiting deep residual network for fast parallel MR imaging with complex convolution. Magn. Reson. Imaging 68, 136–147 (2020)

    Article  Google Scholar 

  26. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1905–1914 (2021)

    Google Scholar 

  27. Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., Girshick, R.: Early convolutions help transformers see better. Adv. Neural. Inf. Process. Syst. 34, 30392–30400 (2021)

    Google Scholar 

  28. Yang, Y., Sun, J., Li, H., Xu, Z.: ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 521–538 (2020)

    Article  Google Scholar 

  29. Yiasemis, G., Sonke, J.J., Sśnchez, C., Teuwen, J.: Recurrent variational network: a deep learning inverse problem solver applied to the task of accelerated MRI reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 722–731 (2022)

    Google Scholar 

  30. You, D., Xie, J., Zhang, J.: ISTA-Net++: flexible deep unfolding network for compressive sensing. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 1–6 (2021)

    Google Scholar 

  31. Zbontar, J., et al.: fastMRI: an open dataset and benchmarks for accelerated MRI. arXiv preprint arXiv:1811.08839 (2018)

  32. Zhang, J., Ghanem, B.: ISTA-net: interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)

    Google Scholar 

  33. Zhou, B., et al.: DSFormer: a dual-domain self-supervised transformer for accelerated multi-contrast MRI reconstruction. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4966–4975 (2023)

    Google Scholar 

Download references

Acknowledgments

This study was funded by Zhejiang Provincial Natural Science Foundation of China (Grant No. LGF22F020027) and by National Natural Science Foundation of China (Grant No. 62271448 and 62373324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 363 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, XX., Zhu, FZ., Yang, J., Chen, Y., Shen, D. (2024). Dynamic Hybrid Unrolled Multi-scale Network for Accelerated MRI Reconstruction. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics