Skip to main content

Dynamic Single-Pixel Imaging on an Extended Field of View Without Warping the Patterns

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15007))

  • 1659 Accesses

Abstract

A single-pixel camera is a spatial-multiplexing device that reconstructs an image from a sequence of projections of the scene onto some patterns. This architecture is used, for example, to assist neurosurgery with hyperspectral imaging. However, capturing dynamic scenes is very challenging: as the different projections measure different frames of the scene, standard reconstruction approaches suffer from strong motion artifacts. This paper presents a general framework to reconstruct a moving scene with two main contributions. First, we extend the field of view of the camera beyond that defined by the spatial light modulator, which dramatically reduces the model mismatch. Second, we propose to build the dynamic system matrix without warping the patterns, effectively dismissing discretization errors. Numerical experiments show that both our contributions are necessary for an artifact-free reconstruction. The influence of a reduced measured set, robustness to noise and to motion errors were also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/openspyrit/spyrit.

References

  1. Beneti Martins, G., Mahieu-Williame, L., Baudier, T., Ducros, N.: OpenSpyrit: an ecosystem for open single-pixel hyperspectral imaging. Opt. Express 31(10), 15599 (2023). https://doi.org/10.1364/OE.483937, https://opg.optica.org/abstract.cfm?URI=oe-31-10-15599

  2. Bi, S., Zeng, X., Tang, X., Qin, S., Lai, K.W.C.: Compressive video recovery using block match multi-frame motion estimation based on single pixel cameras. Sensors 16(3), 318 (2016)

    Article  Google Scholar 

  3. Bravo, J.J., Olson, J.D., Davis, S.C., Roberts, D.W., Paulsen, K.D., Kanick, S.C.: Hyperspectral data processing improves PpIX contrast during fluorescence guided surgery of human brain tumors. Sci. Rep. 7(1), 9455 (2017)

    Article  Google Scholar 

  4. Duarte, M.F., et al.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  5. Edgar, M.P., Gibson, G.M., Padgett, M.J.: Principles and prospects for single-pixel imaging. Nat. Photon. 13(1), 13–20 (2019)

    Article  Google Scholar 

  6. Gibson, G.M., Johnson, S.D., Padgett, M.J.: Single-pixel imaging 12 years on: a review. Opt. Express 28(19), 28190–28208 (2020)

    Article  Google Scholar 

  7. Hahn, B.N.: Efficient algorithms for linear dynamic inverse problems with known motion. Inverse Prob. 30(3), 035008 (2014)

    Article  MathSciNet  Google Scholar 

  8. Jiao, J., et al.: Direct parametric reconstruction with joint motion estimation/correction for dynamic brain PET data. IEEE Trans. Med. Imaging 36(1), 203–213 (2016)

    Article  Google Scholar 

  9. Jiao, S., Sun, M., Gao, Y., Lei, T., Xie, Z., Yuan, X.: Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging. Opt. Express 27(9), 12841 (2019).https://doi.org/10.1364/OE.27.012841, https://opg.optica.org/abstract.cfm?URI=oe-27-9-12841

  10. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)

    Article  Google Scholar 

  11. Maitre, T., Bretin, E., Mahieu-Williame, L., Sdika, M., Ducros, N.: Hybrid single-pixel camera for dynamic hyperspectral imaging. In: 2024 IEEE 21st International Symposium on Biomedical Imaging (ISBI). IEEE (2024)

    Google Scholar 

  12. Mur, A.L., Leclerc, P., Peyrin, F., Ducros, N.: Single-pixel image reconstruction from experimental data using neural networks. Opt. Express 29(11), 17097–17110 (2021)

    Article  Google Scholar 

  13. Mur, A.L., Peyrin, F., Ducros, N.: Recurrent neural networks for compressive video reconstruction. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1651–1654. IEEE (2020)

    Google Scholar 

  14. Mur, A.L., Peyrin, F., Ducros, N.: Deep expectation-maximization for single-pixel image reconstruction with signal-dependent noise. IEEE Trans. Comput. Imaging 8, 759–769 (2022)

    Article  Google Scholar 

  15. Rit, S., Sarrut, D., Desbat, L.: Comparison of analytic and algebraic methods for motion-compensated cone-beam CT reconstruction of the thorax. IEEE Trans. Med. Imaging 28(10), 1513–1525 (2009)

    Article  Google Scholar 

  16. Sankaranarayanan, A.C., Xu, L., Studer, C., Li, Y., Kelly, K.F., Baraniuk, R.G.: Video compressive sensing for spatial multiplexing cameras using motion-flow models. SIAM J. Imaging Sci. 8(3), 1489–1518 (2015)

    Article  MathSciNet  Google Scholar 

  17. Scannell, C.M., Villa, A.D., Lee, J., Breeuwer, M., Chiribiri, A.: Robust non-rigid motion compensation of free-breathing myocardial perfusion MRI data. IEEE Trans. Med. Imaging 38(8), 1812–1820 (2019)

    Article  Google Scholar 

  18. Sdika, M., Alston, L., Rousseau, D., Guyotat, J., Mahieu-Williame, L., Montcel, B.: Repetitive motion compensation for real time intraoperative video processing. Med. Image Anal. 53, 1–10 (2019)

    Article  Google Scholar 

  19. Xu, Y., Lu, L., Saragadam, V., Kelly, K.F.: A compressive hyperspectral video imaging system using a single-pixel detector. Nat. Commun. 15(1), 1456 (2024)

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the French National Research Agency (ANR), under Grant ANR-22-CE19-0030-01 (ULHYB Project) and performed within the framework of the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program “Investissements d’Avenir” operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Sdika .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 181 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maitre, T., Bretin, E., Phan, R., Ducros, N., Sdika, M. (2024). Dynamic Single-Pixel Imaging on an Extended Field of View Without Warping the Patterns. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics