Skip to main content

Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

We propose PHIMO, a physics-informed learning-based motion correction method tailored to quantitative MRI. PHIMO leverages information from the signal evolution to exclude motion-corrupted k-space lines from a data-consistent reconstruction. We demonstrate the potential of PHIMO for the application of T2* quantification from gradient echo MRI, which is particularly sensitive to motion due to its sensitivity to magnetic field inhomogeneities. A state-of-the-art technique for motion correction requires redundant acquisition of the k-space center, prolonging the acquisition. We show that PHIMO can detect and exclude intra-scan motion events and, thus, correct for severe motion artifacts. PHIMO approaches the performance of the state-of-the-art motion correction method, while substantially reducing the acquisition time by over 40%, facilitating clinical applicability. Our code is available at https://github.com/compai-lab/2024-miccai-eichhorn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson, D.: Retrospective correction of motion in MR images. In: van der Kouwe, A.J., Andre, J.B. (eds.) Motion Correction in MR, vol. 6, pp. 259–267. Academic Press (2022). https://doi.org/10.1016/B978-0-12-824460-9.00022-4

  2. Chatterjee, S., Sciarra, A., Dünnwald, M., Oeltze-Jafra, S., Nürnberger, A., Speck, O.: Retrospective motion correction of MR images using prior-assisted deep learning. In: Proceedings of the 34th Conference on NeurIPS (2020). https://doi.org/10.48550/arXiv.2011.14134

  3. Eichhorn, H., et al.: Physics-aware motion simulation for T2*-weighted brain MRI. In: Wolterink, J.M., Svoboda, D., Zhao, C., Fernandez, V. (eds.) SASHIMI 2023. LNCS, vol. 14288, pp. 42–52. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44689-4_5

    Chapter  Google Scholar 

  4. Hammernik, K., Küstner, T.: Machine enhanced reconstruction learning and interpretation networks (MERLIN). In: Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM) (2022)

    Google Scholar 

  5. Haskell, M.W., et al.: Network accelerated motion estimation and reduction (NAMER): convolutional neural network guided retrospective motion correction using a separable motion model. Magn. Reson. Med. 82(4), 1452–1461 (2019). https://doi.org/10.1002/mrm.27771

    Article  Google Scholar 

  6. Hirsch, N.M., Preibisch, C.: T2* mapping with background gradient correction using different excitation pulse shapes. Am. J. Neuroradiol. 34(6), E65–E68 (2013). https://doi.org/10.3174/ajnr.A3021

    Article  Google Scholar 

  7. Hirsch, N.M., Toth, V., Förschler, A., Kooijman, H., Zimmer, C., Preibisch, C.: Technical considerations on the validity of blood oxygenation level-dependent-based MR assessment of vascular deoxygenation. NMR Biomed. 27(7), 853–862 (2014). https://doi.org/10.1002/nbm.3131

    Article  Google Scholar 

  8. Hossbach, J., et al.: Deep learning-based motion quantification from k-space for fast model-based MRI motion correction. Med. Phys. (2022). https://doi.org/10.1002/mp.16119

  9. Johnson, P.M., Drangova, M.: Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Magn. Reson. Med. 82(3), 901–910 (2019). https://doi.org/10.1002/mrm.27772

    Article  Google Scholar 

  10. Kaczmarz, S., Hyder, F., Preibisch, C.: Oxygen extraction fraction mapping with multi-parametric quantitative BOLD MRI: reduced transverse relaxation bias using 3D-GraSE imaging. Neuroimage 220, 117095 (2020). https://doi.org/10.1016/j.neuroimage.2020.117095

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd ICLR (2015). https://doi.org/10.48550/arXiv.1412.6980

  12. Küstner, T., Armanious, K., Yang, J., Yang, B., Schick, F., Gatidis, S.: Retrospective correction of motion-affected MR images using deep learning frameworks. Magn. Reson. Med. 82(4), 1527–1540 (2019). https://doi.org/10.1002/mrm.27783

    Article  Google Scholar 

  13. Magerkurth, J., et al.: Quantitative T2*-mapping based on multi-slice multiple gradient echo flash imaging: retrospective correction for subject motion effects: movement correction in T2* mapping. Magn. Reson. Med. 66(4), 989–997 (2011). https://doi.org/10.1002/mrm.22878

    Article  Google Scholar 

  14. Nöth, U., Volz, S., Hattingen, E., Deichmann, R.: An improved method for retrospective motion correction in quantitative T2* mapping. NeuroImage 92, 106–119 (2014). https://doi.org/10.1016/j.neuroimage.2014.01.050

  15. Oh, G., Lee, J.E., Ye, J.C.: Unpaired MR motion artifact deep learning using outlier-rejecting bootstrap aggregation. IEEE Trans. Med. Imaging 40(11), 3125–3139 (2021). https://doi.org/10.1109/TMI.2021.3089708

    Article  Google Scholar 

  16. Singh, N.M., et al.: Data consistent deep rigid MRI motion correction. In: Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, vol. 227, pp. 368–381. PMLR (2024). https://proceedings.mlr.press/v227/singh24a.html

  17. Spieker, V., et al.: Deep learning for retrospective motion correction in MRI: a comprehensive review. IEEE Trans. Med. Imaging 43(2), 846–859 (2024). https://doi.org/10.1109/TMI.2023.3323215

    Article  MathSciNet  Google Scholar 

  18. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  19. Xu, X., et al.: Learning-based motion artifact removal networks for quantitative R2\(\ast \) mapping. Magn. Reson. Med. 88(1), 106–119 (2022). https://doi.org/10.1002/mrm.29188

  20. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

H.E. and V.S. are partially supported by the Helmholtz Association under the joint research school “Munich School for Data Science - MUDS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Eichhorn .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

K.W. is an employee of Philips GmbH Market DACH.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 434 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eichhorn, H. et al. (2024). Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics