Abstract
Neural implicit k-space representations have shown promising results for dynamic MRI at high temporal resolutions. Yet, their exclusive training in k-space limits the application of common image regularization methods to improve the final reconstruction. In this work, we introduce the concept of parallel imaging-inspired self-consistency (PISCO), which we incorporate as novel self-supervised k-space regularization enforcing a consistent neighborhood relationship. At no additional data cost, the proposed regularization significantly improves neural implicit k-space reconstructions on simulated data. Abdominal in-vivo reconstructions using PISCO result in enhanced spatio-temporal image quality compared to state-of-the-art methods. Code is available at https://github.com/compai-lab/2024-miccai-spieker.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, R., et al.: Plug-and-play methods for magnetic resonance imaging: using denoisers for image recovery. IEEE Signal Process. Mag. 37(1), 105–116 (2020). https://doi.org/10.1109/msp.2019.2949470
Akçakaya, M., Moeller, S., Weingärtner, S., Uğurbil, K.: Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging. Magn. Reson. Med. 81(1), 439–453 (2019). https://doi.org/10.1002/mrm.27420
Breuer, F.A., Kellman, P., Griswold, M.A., Jakob, P.M.: Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn. Reson. Med. 53(4), 981–985 (2005). https://doi.org/10.1002/mrm.20430
Catalán, T., Courdurier, M., Osses, A., Botnar, R., Costabal, F.S., Prieto, C.: Unsupervised reconstruction of accelerated cardiac cine MRI using Neural Fields (25072023). http://arxiv.org/pdf/2307.14363v1
Collins, C.M., Yang, B., Yang, Q.X., Smith, M.B.: Numerical calculations of the static magnetic field in three-dimensional multi-tissue models of the human head. Magn. Reson. Imaging 20(5), 413–424 (2002). https://doi.org/10.1016/s0730-725x(02)00507-6
Feng, L., Axel, L., Chandarana, H., Block, K.T., Sodickson, D.K., Otazo, R.: XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn. Reson. Med. 75(2), 775–788 (2016). https://doi.org/10.1002/mrm.25665
Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002). https://doi.org/10.1002/mrm.10171
Hammernik, K., et al.: Physics-driven deep learning for computational magnetic resonance imaging: combining physics and machine learning for improved medical imaging. IEEE Signal Process. Mag. 40(1), 98–114 (2023). https://doi.org/10.1109/msp.2022.3215288
Huang, W., Li, H.B., Pan, J., Cruz, G., Rueckert, D., Hammernik, K.: Neural implicit k-space for binning-free non-Cartesian cardiac MR imaging. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds.) IPMI 2023, pp. 548–560. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_42
Jafari, R., et al.: GRASPNET: Fast spatiotemporal deep learning reconstruction of golden-angle radial data for free-breathing dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed. 36(3), e4861 (2023). https://doi.org/10.1002/nbm.4861
Maril, N., Collins, C.M., Greenman, R.L., Lenkinski, R.E.: Strategies for shimming the breast. Magn. Reson. Med. 54(5), 1139–1145 (2005). https://doi.org/10.1002/mrm.20679
Ryu, K., Alkan, C., Choi, C., Jang, I., Vasanawala, S.: K-space refinement in deep learning MR reconstruction via regularizing scan specific SPIRiT-based self consistency. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE (2021). https://doi.org/10.1109/iccvw54120.2021.00446
Segars, W.P., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.M.W.: 4D XCAT phantom for multimodality imaging research. Med. Phys. 37(9), 4902–4915 (2010). https://doi.org/10.1118/1.3480985
Seiberlich, N., Ehses, P., Duerk, J., Gilkeson, R., Griswold, M.: Improved radial GRAPPA calibration for real-time free-breathing cardiac imaging. Magn. Reson. Med. 65(2), 492–505 (2011). https://doi.org/10.1002/mrm.22618
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit Neural Representations with Periodic Activation Functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)
Spieker, V., et al.: Deep learning for retrospective motion correction in MRI: a comprehensive review. IEEE Trans. Med. Imaging (2023). https://doi.org/10.1109/TMI.2023.3323215
Spieker, V., et al.: ICoNIK: Generating respiratory-resolved abdominal MR reconstructions using neural implicit representations in k-space. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds.) Deep Generative Models. MICCAI 2023. LNCS, vol. 14533, pp. 183–192. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-53767-7_18
Stemkens, B., Paulson, E.S., Tijssen, R.H.N.: Nuts and bolts of 4D-MRI for radiotherapy. Phys. Med. Biol. 63(21), 21TR01 (2018). https://doi.org/10.1088/1361-6560/aae56d
Terpstra, M.L., Maspero, M., Verhoeff, J.J.C., van den Berg, C.A.T.: Accelerated respiratory-resolved 4D-MRI with separable spatio-temporal neural networks. Med. Phys. 50(9), 5331–5342 (2023). https://doi.org/10.1002/mp.16643
Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014). https://doi.org/10.1002/mrm.24751
Yu, H., Shimakawa, A., McKenzie, C.A., Brodsky, E., Brittain, J.H., Reeder, S.B.: Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn. Reson. Med. 60(5), 1122–1134 (2008). https://doi.org/10.1002/mrm.21737
Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015). https://doi.org/10.1002/jmri.24850
Acknowledgments
V.S. and H.E. are partially supported by the Helmholtz Association under the joint research school “Munich School for Data Science - MUDS”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
V.S. received the Bayer Foundation Fellowship during part of this work.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Spieker, V. et al. (2024). Self-supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representations. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_59
Download citation
DOI: https://doi.org/10.1007/978-3-031-72104-5_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72103-8
Online ISBN: 978-3-031-72104-5
eBook Packages: Computer ScienceComputer Science (R0)