Abstract
Current deep learning-based models typically analyze medical images in either 2D or 3D albeit disregarding volumetric information or suffering sub-optimal performance due to the anisotropic resolution of MR data. Furthermore, providing an accurate uncertainty estimation is beneficial to clinicians, as it indicates how confident a model is about its prediction. We propose a novel 2.5D cross-slice attention model that utilizes both global and local information, along with an evidential critical loss, to perform evidential deep learning for the detection in MR images of prostate cancer, one of the most common cancers and a leading cause of cancer-related death in men. We perform extensive experiments with our model on two different datasets and achieve state-of-the-art performance in prostate cancer detection along with improved epistemic uncertainty estimation. The implementation of the model is available at https://github.com/aL3x-O-o-Hung/GLCSA_ECLoss.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Appayya, M.B., et al.: National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection–recommendations from a UK consensus meeting. BJU Int. 122(1), 13 (2018)
Bhalerao, M., Thakur, S.: Brain tumor segmentation based on 3D residual U-Net. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 218–225 (2020)
Cao, H., et al.: Swin-Unet: unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-25066-8_9
Cao, R., et al.: Joint prostate cancer detection and gleason score prediction in mp-MRI via FocalNet. IEEE Trans. Med. Imaging 38(11), 2496–2506 (2019)
Carannante, G., Dera, D., Bouaynaya, N.C., Rasool, G., Fathallah-Shaykh, H.M.: Trustworthy medical segmentation with uncertainty estimation. arXiv preprint arXiv:2111.05978 (2021)
Chen, H., Dou, Q., Yu, L., Qin, J., Heng, P.A.: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage 170, 446–455 (2018)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Duran, A., et al.: ProstAttention-Net: a deep attention model for prostate cancer segmentation by aggressiveness in MRI scans. Med. Image Anal. 77, 102347 (2022)
Han, L., Chen, Y., Li, J., Zhong, B., Lei, Y., Sun, M.: Liver segmentation with 2.5D perpendicular UNets. Comput. Electr. Eng. 91, 107118 (2021)
Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)
Hosseinzadeh, M., Saha, A., Brand, P., Slootweg, I., de Rooij, M., Huisman, H.: Deep learning-assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge. In: European Radiology, pp. 1–11 (2022)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745
Hung, A.L.Y., Zheng, H., Miao, Q., Raman, S.S., Terzopoulos, D., Sung, K.: CAT-Net: a cross-slice attention transformer model for prostate zonal segmentation in MRI. IEEE Trans. Med. Imaging 42(1), 291–303 (2022)
Hung, A.L.Y., et al.: CSAM: a 2.5D cross-slice attention module for anisotropic volumetric medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5923–5932 (2024)
Isensee, Fet al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)
Jia, H., et al.: 3D APA-Net: 3D adversarial pyramid anisotropic convolutional network for prostate segmentation in MR images. IEEE Trans. Med. Imaging 39(2), 447–457 (2019)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M.: A robust volumetric transformer for accurate 3D tumor segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, vol. 13435, pp. 162–172. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16443-9_16
Rawla, P.: Epidemiology of prostate cancer. World J. Oncol. 10(2), 63 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Saha, A., et al.: Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI: The PI-CAI Challenge (Study Protocol) (2022). https://doi.org/10.5281/zenodo.6667655
Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. Adv. Neural Inf. Process. Syst. 31 (2018)
Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University Press, Princeton (1976)
Shafer, G.: Dempster-Shafer theory. Encycl. Artif. Intell. 1, 330–331 (1992)
Tang, P., Yang, P., Nie, D., Wu, X., Zhou, J., Wang, Y.: Unified medical image segmentation by learning from uncertainty in an end-to-end manner. Knowl.-Based Syst. 241, 108215 (2022)
Turkbey, B., et al.: Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 76(3), 340–351 (2019)
Yan, X., Tang, H., Sun, S., Ma, H., Kong, D., Xie, X.: AFTer-UNet: axial fusion transformer UNet for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3971–3981 (2022)
Zhang, Y., Yuan, L., Wang, Y., Zhang, J.: SAU-Net: efficient 3D spine MRI segmentation using inter-slice attention. In: Medical Imaging With Deep Learning, pp. 903–913. PMLR (2020)
Zheng, H., et al.: AtPCa-Net: anatomical-aware prostate cancer detection network on multi-parametric MRI. Sci. Rep. 14(1), 5740 (2024)
Acknowledgments
The research reported herein was funded in part by the National Institutes of Health under grants R01-CA248506 and R01-CA272702 and by the Integrated Diagnostics Program of the Departments of Radiological Sciences and Pathology in the UCLA David Geffen School of Medicine.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hung, A.L.Y., Zheng, H., Zhao, K., Pang, K., Terzopoulos, D., Sung, K. (2024). Cross-Slice Attention and Evidential Critical Loss for Uncertainty-Aware Prostate Cancer Detection. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-72111-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72110-6
Online ISBN: 978-3-031-72111-3
eBook Packages: Computer ScienceComputer Science (R0)